Inter-case Predictive Process Monitoring: A candidate for Quantum
Machine Learning?
- URL: http://arxiv.org/abs/2307.00080v1
- Date: Fri, 30 Jun 2023 18:33:45 GMT
- Title: Inter-case Predictive Process Monitoring: A candidate for Quantum
Machine Learning?
- Authors: Stefan Hill, David Fitzek, Patrick Delfmann, Carl Corea
- Abstract summary: This work builds upon the recent progress in inter-case Predictive Process Monitoring.
It comprehensively benchmarks the impact of inter-case features on prediction accuracy.
It includes quantum machine learning models, which are expected to provide an advantage over classical models.
The evaluation on real-world training data from the BPI challenge shows that the inter-case features provide a significant boost by more than four percent in accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regardless of the domain, forecasting the future behaviour of a running
process instance is a question of interest for decision makers, especially when
multiple instances interact. Fostered by the recent advances in machine
learning research, several methods have been proposed to predict the next
activity, outcome or remaining time of a process automatically. Still, building
a model with high predictive power requires both - intrinsic knowledge of how
to extract meaningful features from the event log data and a model that
captures complex patterns in data. This work builds upon the recent progress in
inter-case Predictive Process Monitoring (PPM) and comprehensively benchmarks
the impact of inter-case features on prediction accuracy. Moreover, it includes
quantum machine learning models, which are expected to provide an advantage
over classical models with a scaling amount of feature dimensions. The
evaluation on real-world training data from the BPI challenge shows that the
inter-case features provide a significant boost by more than four percent in
accuracy and quantum algorithms are indeed competitive in a handful of feature
configurations. Yet, as quantum hardware is still in its early stages of
development, this paper critically discusses these findings in the light of
runtime, noise and the risk to overfit on the training data. Finally, the
implementation of an open-source plugin demonstrates the technical feasibility
to connect a state-of-the-art workflow engine such as Camunda to an IBM quantum
computing cloud service.
Related papers
- Optimal design of experiments in the context of machine-learning inter-atomic potentials: improving the efficiency and transferability of kernel based methods [0.7234862895932991]
Data-driven, machine learning (ML) models of atomistic interactions can relate nuanced aspects of atomic arrangements into predictions of energies and forces.
The main challenge stems from the fact that descriptors of chemical environments are often sparse high-dimensional objects without a well-defined continuous metric.
We will demonstrate that classical concepts of statistical planning of experiments and optimal design can help to mitigate such problems at a relatively low computational cost.
arXiv Detail & Related papers (2024-05-14T14:14:23Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Learning Operators with Coupled Attention [9.715465024071333]
We propose a novel operator learning method, LOCA, motivated from the recent success of the attention mechanism.
In our architecture the input functions are mapped to a finite set of features which are then averaged with attention weights that depend on the output query locations.
By coupling these attention weights together with an integral transform, LOCA is able to explicitly learn correlations in the target output functions.
arXiv Detail & Related papers (2022-01-04T08:22:03Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Quantum Bayesian decision-making* [0.0]
It proposes a completely quantum mechanical decision-making process with a proven computational advantage.
A prototype implementation in Qiskit (a Python-based program development kit for the IBM Q machine) is discussed as a proof-of-concept.
arXiv Detail & Related papers (2020-10-05T15:19:16Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.