論文の概要: Queer People are People First: Deconstructing Sexual Identity
Stereotypes in Large Language Models
- arxiv url: http://arxiv.org/abs/2307.00101v1
- Date: Fri, 30 Jun 2023 19:39:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 18:13:32.401504
- Title: Queer People are People First: Deconstructing Sexual Identity
Stereotypes in Large Language Models
- Title(参考訳): クイア人はまず人である:大規模言語モデルにおける性同一性ステレオタイプを分解する
- Authors: Harnoor Dhingra, Preetiha Jayashanker, Sayali Moghe, Emma Strubell
- Abstract要約: 大規模言語モデル(LLM)は、主に最小処理のWebテキストに基づいて訓練される。
LLMはLGBTQIA+コミュニティのような、疎外されたグループに対して必然的にステレオタイプを永続させることができる。
- 参考スコア(独自算出の注目度): 3.974379576408554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are trained primarily on minimally processed web
text, which exhibits the same wide range of social biases held by the humans
who created that content. Consequently, text generated by LLMs can
inadvertently perpetuate stereotypes towards marginalized groups, like the
LGBTQIA+ community. In this paper, we perform a comparative study of how LLMs
generate text describing people with different sexual identities. Analyzing
bias in the text generated by an LLM using regard score shows measurable bias
against queer people. We then show that a post-hoc method based on
chain-of-thought prompting using SHAP analysis can increase the regard of the
sentence, representing a promising approach towards debiasing the output of
LLMs in this setting.
- Abstract(参考訳): 大規模言語モデル(llm)は、主に最小処理されたwebテキストに基づいて訓練され、そのコンテンツを作成した人間が持つ幅広い社会的バイアスを示す。
したがって、llmsによって生成されたテキストはlgbtqia+コミュニティのような限界グループに対して不注意にステレオタイプを持続することができる。
本稿では、llmが性同一性の違いを記述したテキストを生成する方法の比較研究を行う。
評価スコアを用いてLLMが生成したテキストのバイアスを分析すると、クイア人に対する測定可能なバイアスが示される。
そこで, SHAP分析を用いたチェーン・オブ・シークレットに基づくポストホック法は, LLMのアウトプットを損なうための有望なアプローチとして, 文の関連性を高めることができることを示す。
関連論文リスト
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
大型言語モデル (LLM) は人間の好むテキストを生成する。
本稿では,これらのモデルで共有される共通特性について述べる。
報奨モデルの検出能力をさらに向上する2つのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T17:38:33Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
社会的偏見は言語機関に現れることがある。
本稿では,言語庁バイアス評価ベンチマークを紹介する。
我々は,最近の3つのLarge Language Model(LLM)生成コンテンツにおいて,言語エージェンシーの社会的バイアスを明らかにした。
論文 参考訳(メタデータ) (2024-04-16T12:27:54Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
大規模言語モデル(LLM)は、特定のタスクの自己フィードバックを通じてパフォーマンスを向上し、他のタスクを劣化させる。
我々は、LSMの自己バイアス(自称世代を好む傾向)を正式に定義する。
我々は、翻訳、制約付きテキスト生成、数学的推論の6つのLCMを解析する。
論文 参考訳(メタデータ) (2024-02-18T03:10:39Z) - A Group Fairness Lens for Large Language Models [34.0579082699443]
大規模な言語モデルは、ソーシャルメディアの文脈に展開する際の偏見と不公平さを永久に防ぐことができる。
多様な社会集団を特徴付ける新しい階層型スキーマを用いて,グループフェアネスレンズからLLMバイアスを評価する。
我々は,グループフェアネスの観点からLLMのバイアスを軽減するために,GF-Thinkという新しいチェーン・オブ・シンク法を考案した。
論文 参考訳(メタデータ) (2023-12-24T13:25:15Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
大規模言語モデル(LLM)は、個人が様々な種類のコンテンツを書くのを支援する効果的なツールとして最近登場した。
本稿では, LLM 生成した参照文字の性別バイアスについて批判的に検討する。
論文 参考訳(メタデータ) (2023-10-13T16:12:57Z) - Bias of AI-Generated Content: An Examination of News Produced by Large Language Models [3.386586126505656]
大規模言語モデル(LLM)は、AIGC(AI-Generated Content)として知られる、私たちの生活を変革し、彼らが生成するコンテンツを通じて機能する可能性を持っている。
本稿では,ChatGPT や LLaMA を含む 7 つの代表的な LLM が生成する AIGC のバイアスについて検討する。
論文 参考訳(メタデータ) (2023-09-18T14:47:24Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
本稿では, 年齢や美しさなど, 研究の少ない, 連続的な, 次元に沿ったバイアスについて検討する。
実験心理学において, LLMは, 特定の社会集団に対して, 肯定的, 否定的感情の偏見を広く抱いているか, あるいは「美しいものは良い」バイアスと類似しているかを問う。
論文 参考訳(メタデータ) (2023-09-16T07:07:04Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
本稿では,ジェンダーステレオタイプに関する大規模言語モデルの振る舞いについて考察する。
我々は、WinoBiasとは違って、性別バイアスの存在をテストするための単純なパラダイムを用いています。
a) LLMは、人の性別とステレオタイプ的に一致した職業を選択する確率が3~6倍、(b) これらの選択は、公務員の統計に反映された基礎的真実よりも人々の知覚に適合し、(d) LLMは、我々の研究項目の95%の時間において重要な曖昧さを無視する。
論文 参考訳(メタデータ) (2023-08-28T22:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。