論文の概要: Risk-sensitive Actor-free Policy via Convex Optimization
- arxiv url: http://arxiv.org/abs/2307.00141v1
- Date: Fri, 30 Jun 2023 21:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 17:53:15.824919
- Title: Risk-sensitive Actor-free Policy via Convex Optimization
- Title(参考訳): 凸最適化によるリスク感応的アクターフリー政策
- Authors: Ruoqi Zhang, Jens Sj\"olund
- Abstract要約: 従来の強化学習手法はエージェントの安全性を最適化し、意図しない結果をもたらす可能性がある。
条件付きリスクのないネットワークに基づく最適なアクター感応ポリシーを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional reinforcement learning methods optimize agents without
considering safety, potentially resulting in unintended consequences. In this
paper, we propose an optimal actor-free policy that optimizes a risk-sensitive
criterion based on the conditional value at risk. The risk-sensitive objective
function is modeled using an input-convex neural network ensuring convexity
with respect to the actions and enabling the identification of globally optimal
actions through simple gradient-following methods. Experimental results
demonstrate the efficacy of our approach in maintaining effective risk control.
- Abstract(参考訳): 従来の強化学習手法は安全性を考慮せずにエージェントを最適化し、意図しない結果をもたらす可能性がある。
本稿では,リスクの条件値に基づいて,リスクに敏感な基準を最適化するアクターフリーポリシーを提案する。
リスクに敏感な目的関数は、入力凸ニューラルネットワークを用いて、動作に対する凸性を保証し、簡単な勾配追従法によるグローバルな最適行動の識別を可能にする。
実験の結果,本手法の有効性が実証された。
関連論文リスト
- Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
Score Climbing [3.9410617513331863]
動的システムの最適制御は、シーケンシャルな意思決定において重要な課題である。
コントロール・アズ・推論のアプローチは大きな成功をおさめ、探索・探索ジレンマに対処するためのリスクに敏感なフレームワークを提供する。
本稿では, 条件付き粒子フィルタから抽出した試料下でのマルコフ強化スコアクライミングとして, リスク感応性制御のフレーミングによる新しい視点を提案する。
論文 参考訳(メタデータ) (2023-12-21T16:34:03Z) - Pitfall of Optimism: Distributional Reinforcement Learning by
Randomizing Risk Criterion [9.35556128467037]
本稿では,リスクの一方的な傾向を避けるために,リスク基準のランダム化によって行動を選択する新しい分散強化学習アルゴリズムを提案する。
理論的結果は,提案手法がバイアス探索に該当せず,最適回帰に収束することが保証されていることを裏付けるものである。
論文 参考訳(メタデータ) (2023-10-25T10:53:04Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
一般的なアプローチは、一般化を捉え、ペナルティと共同で経験的リスクを最小化するために、データ駆動の代理ペナルティを設計することである。
我々は、このレシピの重大な失敗モードは、共同最適化における誤ったペナルティや難しさによる過度なリスクであると主張している。
我々は,この問題を解消するアプローチを提案し,経験的リスクと刑罰を同時に最小化する代わりに,経験的リスクの最適性の制約の下でのペナルティを最小化する。
論文 参考訳(メタデータ) (2023-08-30T08:46:46Z) - Efficient Action Robust Reinforcement Learning with Probabilistic Policy
Execution Uncertainty [43.55450683502937]
本稿では,確率的政策実行の不確実性を考慮したアクションロバストなRLに着目した。
我々は,確率的政策実行の不確実性を伴う行動堅牢なMDPに対する最適政策の存在を確立する。
我々はまた、最適な後悔とサンプルの複雑さを最小限に抑えるAction Robust Reinforcement Learning with Certificates (ARRLC)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-07-15T00:26:51Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
リスクに敏感な強化学習は、期待される報酬とリスクのバランスをとるポリシーを最適化することを目的としている。
本稿では,線形および一般関数近似の下で,CVaR(Iterated Conditional Value-at-Risk)を目標とする新しいフレームワークを提案する。
本稿では,この反復CVaR RLに対するサンプル効率の高いアルゴリズムを提案し,厳密な理論的解析を行う。
論文 参考訳(メタデータ) (2023-07-06T08:14:54Z) - A Risk-Sensitive Approach to Policy Optimization [21.684251937825234]
標準深層強化学習(DRL)は、政策の定式化における収集経験を均等に考慮し、期待される報酬を最大化することを目的としている。
そこで本研究では,フルエピソード報酬の分布の累積分布関数 (CDF) で規定されるリスク感性目標を最適化する,より直接的なアプローチを提案する。
エージェントの動作が不十分なシナリオを強調する中程度の「悲観的」リスクプロファイルの使用が,探索の強化と,障害への継続的な対処に繋がることを示す。
論文 参考訳(メタデータ) (2022-08-19T00:55:05Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
我々は、期待される性能とリスクのバランスをとるために、新しいポリシー勾配スタイルのロバスト最適化手法PG-BROILを導出する。
その結果,PG-BROILはリスクニュートラルからリスク・アバースまでの行動のファミリを創出できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-11T16:49:15Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - Bayesian Robust Optimization for Imitation Learning [34.40385583372232]
逆強化学習は、パラメータ化された報酬関数を学習することにより、新しい状態への一般化を可能にする。
既存のIRLに基づく安全な模倣学習アプローチは、maxminフレームワークを使用してこの不確実性に対処する。
BROILは、リターン最大化とリスク最小化の動作を補間する自然な方法を提供する。
論文 参考訳(メタデータ) (2020-07-24T01:52:11Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。