Risk-sensitive Actor-free Policy via Convex Optimization
- URL: http://arxiv.org/abs/2307.00141v1
- Date: Fri, 30 Jun 2023 21:20:04 GMT
- Title: Risk-sensitive Actor-free Policy via Convex Optimization
- Authors: Ruoqi Zhang, Jens Sj\"olund
- Abstract summary: Traditional reinforcement learning methods optimize agents safety, potentially resulting in unintended consequences.
We propose an optimal actor-sensitive policy based on a conditional-risk-free network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional reinforcement learning methods optimize agents without
considering safety, potentially resulting in unintended consequences. In this
paper, we propose an optimal actor-free policy that optimizes a risk-sensitive
criterion based on the conditional value at risk. The risk-sensitive objective
function is modeled using an input-convex neural network ensuring convexity
with respect to the actions and enabling the identification of globally optimal
actions through simple gradient-following methods. Experimental results
demonstrate the efficacy of our approach in maintaining effective risk control.
Related papers
- Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
Score Climbing [3.9410617513331863]
optimal control of dynamical systems is a crucial challenge in sequential decision-making.
Control-as-inference approaches have had considerable success, providing a viable risk-sensitive framework to address the exploration-exploitation dilemma.
This paper introduces a novel perspective by framing risk-sensitive control as Markovian reinforcement score climbing under samples drawn from a conditional particle filter.
arXiv Detail & Related papers (2023-12-21T16:34:03Z) - Pitfall of Optimism: Distributional Reinforcement Learning by
Randomizing Risk Criterion [9.35556128467037]
We present a novel distributional reinforcement learning algorithm that selects actions by randomizing risk criterion to avoid one-sided tendency on risk.
Our theoretical results support that the proposed method does not fall into biased exploration and is guaranteed to converge to an optimal return.
arXiv Detail & Related papers (2023-10-25T10:53:04Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
A common approach is designing a data-driven surrogate penalty to capture generalization and minimize the empirical risk jointly with the penalty.
We argue that a significant failure mode of this recipe is an excess risk due to an erroneous penalty or hardness in joint optimization.
We present an approach that eliminates this problem. Instead of jointly minimizing empirical risk with the penalty, we minimize the penalty under the constraint of optimality of the empirical risk.
arXiv Detail & Related papers (2023-08-30T08:46:46Z) - Efficient Action Robust Reinforcement Learning with Probabilistic Policy
Execution Uncertainty [43.55450683502937]
In this paper, we focus on action robust RL with the probabilistic policy execution uncertainty.
We establish the existence of an optimal policy on the action robust MDPs with probabilistic policy execution uncertainty.
We also develop Action Robust Reinforcement Learning with Certificates (ARRLC) algorithm that minimax optimal regret and sample complexity.
arXiv Detail & Related papers (2023-07-15T00:26:51Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - A Risk-Sensitive Approach to Policy Optimization [21.684251937825234]
Standard deep reinforcement learning (DRL) aims to maximize expected reward, considering collected experiences equally in formulating a policy.
We propose a more direct approach whereby risk-sensitive objectives, specified in terms of the cumulative distribution function (CDF) of the distribution of full-episode rewards, are optimized.
We demonstrate that the use of moderately "pessimistic" risk profiles, which emphasize scenarios where the agent performs poorly, leads to enhanced exploration and a continual focus on addressing deficiencies.
arXiv Detail & Related papers (2022-08-19T00:55:05Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Bayesian Robust Optimization for Imitation Learning [34.40385583372232]
Inverse reinforcement learning can enable generalization to new states by learning a parameterized reward function.
Existing safe imitation learning approaches based on IRL deal with this uncertainty using a maxmin framework.
BROIL provides a natural way to interpolate between return-maximizing and risk-minimizing behaviors.
arXiv Detail & Related papers (2020-07-24T01:52:11Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.