AIGCIQA2023: A Large-scale Image Quality Assessment Database for AI
Generated Images: from the Perspectives of Quality, Authenticity and
Correspondence
- URL: http://arxiv.org/abs/2307.00211v2
- Date: Sat, 15 Jul 2023 11:05:04 GMT
- Title: AIGCIQA2023: A Large-scale Image Quality Assessment Database for AI
Generated Images: from the Perspectives of Quality, Authenticity and
Correspondence
- Authors: Jiarui Wang, Huiyu Duan, Jing Liu, Shi Chen, Xiongkuo Min, Guangtao
Zhai
- Abstract summary: We first generate over 2000 images based on 6 state-of-the-art text-to-image generation models using 100 prompts.
Based on these images, a subjective experiment is conducted to assess the human visual preferences for each image from three perspectives.
We conduct a benchmark experiment to evaluate the performance of several state-of-the-art IQA metrics on our constructed database.
- Score: 42.85549933048976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, in order to get a better understanding of the human visual
preferences for AIGIs, a large-scale IQA database for AIGC is established,
which is named as AIGCIQA2023. We first generate over 2000 images based on 6
state-of-the-art text-to-image generation models using 100 prompts. Based on
these images, a well-organized subjective experiment is conducted to assess the
human visual preferences for each image from three perspectives including
quality, authenticity and correspondence. Finally, based on this large-scale
database, we conduct a benchmark experiment to evaluate the performance of
several state-of-the-art IQA metrics on our constructed database.
Related papers
- Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
We first establish a novel Image Quality Assessment (IQA) database for AIGIs, termed AIGCIQA2023+.
This paper presents a MINT-IQA model to evaluate and explain human preferences for AIGIs from Multi-perspectives with INstruction Tuning.
arXiv Detail & Related papers (2024-05-12T17:45:11Z) - PKU-AIGIQA-4K: A Perceptual Quality Assessment Database for Both Text-to-Image and Image-to-Image AI-Generated Images [1.5265677582796984]
We establish a large scale perceptual quality assessment database for both text-to-image and image-to-image AIGIs, named PKU-AIGIQA-4K.
We propose three image quality assessment (IQA) methods based on pre-trained models that include a no-reference method NR-AIGCIQA, a full-reference method FR-AIGCIQA, and a partial-reference method PR-AIGCIQA.
arXiv Detail & Related papers (2024-04-29T03:57:43Z) - AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment [54.93996119324928]
We create the largest AIGI subjective quality database to date with 20,000 AIGIs and 420,000 subjective ratings, known as AIGIQA-20K.
We conduct benchmark experiments on this database to assess the correspondence between 16 mainstream AIGI quality models and human perception.
arXiv Detail & Related papers (2024-04-04T12:12:24Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
We establish a large-scale AI generated omnidirectional image IQA database named AIGCOIQA2024.
A subjective IQA experiment is conducted to assess human visual preferences from three perspectives.
We conduct a benchmark experiment to evaluate the performance of state-of-the-art IQA models on our database.
arXiv Detail & Related papers (2024-04-01T10:08:23Z) - PKU-I2IQA: An Image-to-Image Quality Assessment Database for AI
Generated Images [1.6031185986328562]
We establish a human perception-based image-to-image AIGCIQA database, named PKU-I2IQA.
We propose two benchmark models: NR-AIGCIQA based on the no-reference image quality assessment method and FR-AIGCIQA based on the full-reference image quality assessment method.
arXiv Detail & Related papers (2023-11-27T05:53:03Z) - AGIQA-3K: An Open Database for AI-Generated Image Quality Assessment [62.8834581626703]
We build the most comprehensive subjective quality database AGIQA-3K so far.
We conduct a benchmark experiment on this database to evaluate the consistency between the current Image Quality Assessment (IQA) model and human perception.
We believe that the fine-grained subjective scores in AGIQA-3K will inspire subsequent AGI quality models to fit human subjective perception mechanisms.
arXiv Detail & Related papers (2023-06-07T18:28:21Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
We consider AR technology as the superimposition of virtual scenes and real scenes, and introduce visual confusion as its basic theory.
A ConFusing Image Quality Assessment (CFIQA) database is established, which includes 600 reference images and 300 distorted images generated by mixing reference images in pairs.
An objective metric termed CFIQA is also proposed to better evaluate the confusing image quality.
arXiv Detail & Related papers (2022-04-11T07:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.