VesselMorph: Domain-Generalized Retinal Vessel Segmentation via
Shape-Aware Representation
- URL: http://arxiv.org/abs/2307.00240v2
- Date: Sat, 12 Aug 2023 04:45:12 GMT
- Title: VesselMorph: Domain-Generalized Retinal Vessel Segmentation via
Shape-Aware Representation
- Authors: Dewei Hu, Hao Li, Han Liu, Xing Yao, Jiacheng Wang, Ipek Oguz
- Abstract summary: Domain shift is an inherent property of medical images and has become a major obstacle for large-scale deployment of learning-based algorithms.
We propose a method named VesselMorph which generalizes the 2D retinal vessel segmentation task by synthesizing a shape-aware representation.
VesselMorph achieves superior generalization performance compared with competing methods in different domain shift scenarios.
- Score: 12.194439938007672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the absence of a single standardized imaging protocol, domain shift
between data acquired from different sites is an inherent property of medical
images and has become a major obstacle for large-scale deployment of
learning-based algorithms. For retinal vessel images, domain shift usually
presents as the variation of intensity, contrast and resolution, while the
basic tubular shape of vessels remains unaffected. Thus, taking advantage of
such domain-invariant morphological features can greatly improve the
generalizability of deep models. In this study, we propose a method named
VesselMorph which generalizes the 2D retinal vessel segmentation task by
synthesizing a shape-aware representation. Inspired by the traditional Frangi
filter and the diffusion tensor imaging literature, we introduce a
Hessian-based bipolar tensor field to depict the morphology of the vessels so
that the shape information is taken into account. We map the intensity image
and the tensor field to a latent space for feature extraction. Then we fuse the
two latent representations via a weight-balancing trick and feed the result to
a segmentation network. We evaluate on six public datasets of fundus and OCT
angiography images from diverse patient populations. VesselMorph achieves
superior generalization performance compared with competing methods in
different domain shift scenarios.
Related papers
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
We propose a hybrid registration framework called HybridRetina.
We use a keypoint detector and a deformation network called GAMorph to estimate the global transformation and local deformable transformation.
Experiments on two widely-used datasets, FIRE and FLoRI21, show that our proposed HybridRetina significantly outperforms some state-of-the-art methods.
arXiv Detail & Related papers (2024-09-02T08:43:50Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - MAP: Domain Generalization via Meta-Learning on Anatomy-Consistent
Pseudo-Modalities [12.194439938007672]
We propose Meta learning on Anatomy-consistent Pseudo-modalities (MAP)
MAP improves model generalizability by learning structural features.
We evaluate our model on seven public datasets of various retinal imaging modalities.
arXiv Detail & Related papers (2023-09-03T22:56:22Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - BayeSeg: Bayesian Modeling for Medical Image Segmentation with
Interpretable Generalizability [15.410162313242958]
We propose an interpretable Bayesian framework (BayeSeg) to enhance model generalizability for medical image segmentation.
Specifically, we first decompose an image into a spatial-correlated variable and a spatial-variant variable, assigning hierarchical Bayesian priors to explicitly force them to model the domain-stable shape and domain-specific appearance information respectively.
Finally, we develop a variational Bayesian framework to infer the posterior distributions of these explainable variables.
arXiv Detail & Related papers (2023-03-03T04:48:37Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors [4.2663199451998475]
We introduce a semi-supervised paradigm into the retinal layer segmentation task.
In particular, a novel fully differentiable approach is used for converting surface position regression into a pixel-wise structured segmentation.
In parallel, we propose a set of anatomical priors to improve network training when a limited amount of labeled data is available.
arXiv Detail & Related papers (2022-07-01T14:30:59Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
Cycle-consistent Generative Adversarial Networks have been used to harmonize image sets between a source and target domain.
These methods are prone to instability, contrast inversion, intractable manipulation of pathology, and steganographic mappings which limit their reliable adoption in real-world medical imaging.
We propose a segmentation-renormalized image translation framework to reduce inter-scanner harmonization while preserving anatomical layout.
arXiv Detail & Related papers (2021-02-11T23:53:51Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.