Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model
- URL: http://arxiv.org/abs/2307.00370v2
- Date: Wed, 19 Jul 2023 06:55:04 GMT
- Title: Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model
- Authors: Jiong Cai, Yong Jiang, Yue Zhang, Chengyue Jiang, Ke Yu, Jianhui Ji,
Rong Xiao, Haihong Tang, Tao Wang, Zhongqiang Huang, Pengjun Xie, Fei Huang,
Kewei Tu
- Abstract summary: We propose a novel model called the Entity-Based Relevance Model (EBRM)
The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy.
We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance.
- Score: 78.80174696043021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering the intended items of user queries from a massive repository of
items is one of the main goals of an e-commerce search system. Relevance
prediction is essential to the search system since it helps improve
performance. When online serving a relevance model, the model is required to
perform fast and accurate inference. Currently, the widely used models such as
Bi-encoder and Cross-encoder have their limitations in accuracy or inference
speed respectively. In this work, we propose a novel model called the
Entity-Based Relevance Model (EBRM). We identify the entities contained in an
item and decompose the QI (query-item) relevance problem into multiple QE
(query-entity) relevance problems; we then aggregate their results to form the
QI prediction using a soft logic formulation. The decomposition allows us to
use a Cross-encoder QE relevance module for high accuracy as well as cache QE
predictions for fast online inference. Utilizing soft logic makes the
prediction procedure interpretable and intervenable. We also show that
pretraining the QE module with auto-generated QE data from user logs can
further improve the overall performance. The proposed method is evaluated on
labeled data from e-commerce websites. Empirical results show that it achieves
promising improvements with computation efficiency.
Related papers
- Enhancing Question Answering Precision with Optimized Vector Retrieval and Instructions [1.2425910171551517]
Question-answering (QA) is an important application of Information Retrieval (IR) and language models.
We propose an innovative approach to improve QA task performances by integrating optimized vector retrievals and instruction methodologies.
arXiv Detail & Related papers (2024-11-01T21:14:04Z) - Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs.
Recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries.
We propose an effective Query Instruction Parsing (QIPP) that captures latent query patterns from code-like query instructions.
arXiv Detail & Related papers (2024-10-27T03:18:52Z) - User Intent Recognition and Semantic Cache Optimization-Based Query Processing Framework using CFLIS and MGR-LAU [0.0]
This work analyzed the informational, navigational, and transactional-based intents in queries for enhanced QP.
For efficient QP, the data is structured using Epanechnikov Kernel-Ordering Points To Identify the Clustering Structure (EK-OPTICS)
The extracted features, detected intents and structured data are inputted to the Multi-head Gated Recurrent Learnable Attention Unit (MGR-LAU)
arXiv Detail & Related papers (2024-06-06T20:28:05Z) - Type-based Neural Link Prediction Adapter for Complex Query Answering [2.1098688291287475]
We propose TypE-based Neural Link Prediction Adapter (TENLPA), a novel model that constructs type-based entity-relation graphs.
In order to effectively combine type information with complex logical queries, an adaptive learning mechanism is introduced.
Experiments on 3 standard datasets show that TENLPA model achieves state-of-the-art performance on complex query answering.
arXiv Detail & Related papers (2024-01-29T10:54:28Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - Distantly Supervised Transformers For E-Commerce Product QA [5.460297795256275]
We propose a practical instant question answering (QA) system on product pages of ecommerce services.
For each user query, relevant community question answer (CQA) pairs are retrieved.
Our proposed transformer-based model learns a robust relevance function by jointly learning unified syntactic and semantic representations.
arXiv Detail & Related papers (2021-04-07T06:37:16Z) - Query Rewriting via Cycle-Consistent Translation for E-Commerce Search [13.723266150864037]
We propose a novel deep neural network based approach to query rewriting.
We formulate query rewriting into a cyclic machine translation problem.
We introduce a novel cyclic consistent training algorithm in conjunction with state-of-the-art machine translation models.
arXiv Detail & Related papers (2021-03-01T06:47:12Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
We propose a conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts.
Our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.
arXiv Detail & Related papers (2020-05-28T08:26:06Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
We propose an unsupervised approach to training QA models with generated pseudo-training data.
We show that generating questions for QA training by applying a simple template on a related, retrieved sentence rather than the original context sentence improves downstream QA performance.
arXiv Detail & Related papers (2020-04-24T17:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.