Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs
- URL: http://arxiv.org/abs/2410.20321v1
- Date: Sun, 27 Oct 2024 03:18:52 GMT
- Title: Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs
- Authors: Xingrui Zhuo, Jiapu Wang, Gongqing Wu, Shirui Pan, Xindong Wu,
- Abstract summary: Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs.
Recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries.
We propose an effective Query Instruction Parsing (QIPP) that captures latent query patterns from code-like query instructions.
- Score: 51.33342412699939
- License:
- Abstract: Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs. To enhance the generalization of KGQE models, recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries. The whole process is commonly referred to as Query Pattern Learning (QPL). However, current QPL methods typically suffer from the pattern-entity alignment bias problem, leading to the learned defective query patterns limiting KGQE models' performance. To address this problem, we propose an effective Query Instruction Parsing Plugin (QIPP) that leverages the context awareness of Pre-trained Language Models (PLMs) to capture latent query patterns from code-like query instructions. Unlike the external information introduced by previous QPL methods, we first propose code-like instructions to express FOL queries in an alternative format. This format utilizes textual variables and nested tuples to convey the logical semantics within FOL queries, serving as raw materials for a PLM-based instruction encoder to obtain complete query patterns. Building on this, we design a query-guided instruction decoder to adapt query patterns to KGQE models. To further enhance QIPP's effectiveness across various KGQE models, we propose a query pattern injection mechanism based on compressed optimization boundaries and an adaptive normalization component, allowing KGQE models to utilize query patterns more efficiently. Extensive experiments demonstrate that our plug-and-play method improves the performance of eight basic KGQE models and outperforms two state-of-the-art QPL methods.
Related papers
- User Intent Recognition and Semantic Cache Optimization-Based Query Processing Framework using CFLIS and MGR-LAU [0.0]
This work analyzed the informational, navigational, and transactional-based intents in queries for enhanced QP.
For efficient QP, the data is structured using Epanechnikov Kernel-Ordering Points To Identify the Clustering Structure (EK-OPTICS)
The extracted features, detected intents and structured data are inputted to the Multi-head Gated Recurrent Learnable Attention Unit (MGR-LAU)
arXiv Detail & Related papers (2024-06-06T20:28:05Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Type-based Neural Link Prediction Adapter for Complex Query Answering [2.1098688291287475]
We propose TypE-based Neural Link Prediction Adapter (TENLPA), a novel model that constructs type-based entity-relation graphs.
In order to effectively combine type information with complex logical queries, an adaptive learning mechanism is introduced.
Experiments on 3 standard datasets show that TENLPA model achieves state-of-the-art performance on complex query answering.
arXiv Detail & Related papers (2024-01-29T10:54:28Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
We propose a novel model called the Entity-Based Relevance Model (EBRM)
The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy.
We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance.
arXiv Detail & Related papers (2023-07-01T15:44:53Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
We propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs.
It encodes linearized query structures and entities using pre-trained language models to find answers.
We conduct experiments on two inductive logical reasoning datasets and three transductive datasets.
arXiv Detail & Related papers (2023-05-23T01:25:29Z) - Sequential Query Encoding For Complex Query Answering on Knowledge
Graphs [31.40820604209387]
We propose sequential query encoding (SQE) as an alternative to encode queries for knowledge graph (KG) reasoning.
SQE first uses a search-based algorithm to linearize the computational graph to a sequence of tokens and then uses a sequence encoder to compute its vector representation.
Despite its simplicity, SQE demonstrates state-of-the-art neural query encoding performance on FB15k, FB15k-237, and NELL.
arXiv Detail & Related papers (2023-02-25T16:33:53Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Message Passing Query Embedding [4.035753155957698]
We propose a graph neural network to encode a graph representation of a query.
We show that the model learns entity embeddings that capture the notion of entity type without explicit supervision.
arXiv Detail & Related papers (2020-02-06T17:40:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.