Generating Reliable Pixel-Level Labels for Source Free Domain Adaptation
- URL: http://arxiv.org/abs/2307.00893v1
- Date: Mon, 3 Jul 2023 09:44:13 GMT
- Title: Generating Reliable Pixel-Level Labels for Source Free Domain Adaptation
- Authors: Gabriel Tjio, Ping Liu, Yawei Luo, Chee Keong Kwoh, Joey Zhou Tianyi
- Abstract summary: ReGEN comprises an image-to-image translation network and a segmentation network.
Our workflow generates target-like images using the noisy predictions from the original target domain images.
- Score: 13.913151437401472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work addresses the challenging domain adaptation setting in which
knowledge from the labelled source domain dataset is available only from the
pretrained black-box segmentation model. The pretrained model's predictions for
the target domain images are noisy because of the distributional differences
between the source domain data and the target domain data. Since the model's
predictions serve as pseudo labels during self-training, the noise in the
predictions impose an upper bound on model performance. Therefore, we propose a
simple yet novel image translation workflow, ReGEN, to address this problem.
ReGEN comprises an image-to-image translation network and a segmentation
network. Our workflow generates target-like images using the noisy predictions
from the original target domain images. These target-like images are
semantically consistent with the noisy model predictions and therefore can be
used to train the segmentation network. In addition to being semantically
consistent with the predictions from the original target domain images, the
generated target-like images are also stylistically similar to the target
domain images. This allows us to leverage the stylistic differences between the
target-like images and the target domain image as an additional source of
supervision while training the segmentation model. We evaluate our model with
two benchmark domain adaptation settings and demonstrate that our approach
performs favourably relative to recent state-of-the-art work. The source code
will be made available.
Related papers
- Hybrid diffusion models: combining supervised and generative pretraining for label-efficient fine-tuning of segmentation models [55.2480439325792]
We propose a new pretext task, which is to perform simultaneously image denoising and mask prediction on the first domain.
We show that fine-tuning a model pretrained using this approach leads to better results than fine-tuning a similar model trained using either supervised or unsupervised pretraining.
arXiv Detail & Related papers (2024-08-06T20:19:06Z) - ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer [13.956618446530559]
This paper proposes a zero-shot domain adaptation method based on diffusion models, called ZoDi.
First, we utilize an off-the-shelf diffusion model to synthesize target-like images by transferring the domain of source images to the target domain.
Secondly, we train the model using both source images and synthesized images with the original representations to learn domain-robust representations.
arXiv Detail & Related papers (2024-03-20T14:58:09Z) - Phrase Grounding-based Style Transfer for Single-Domain Generalized
Object Detection [109.58348694132091]
Single-domain generalized object detection aims to enhance a model's generalizability to multiple unseen target domains.
This is a practical yet challenging task as it requires the model to address domain shift without incorporating target domain data into training.
We propose a novel phrase grounding-based style transfer approach for the task.
arXiv Detail & Related papers (2024-02-02T10:48:43Z) - Adapt Anything: Tailor Any Image Classifiers across Domains And
Categories Using Text-to-Image Diffusion Models [82.95591765009105]
We aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories.
We utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts.
arXiv Detail & Related papers (2023-10-25T11:58:14Z) - One-shot Unsupervised Domain Adaptation with Personalized Diffusion
Models [15.590759602379517]
Adapting a segmentation model from a labeled source domain to a target domain is one of the most challenging problems in domain adaptation.
We leverage text-to-image diffusion models to generate a synthetic target dataset with photo-realistic images.
Experiments show that our method surpasses the state-of-the-art OSUDA methods by up to +7.1%.
arXiv Detail & Related papers (2023-03-31T14:16:38Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency
Training [4.336877104987131]
Unsupervised domain adaptation is a promising technique for semantic segmentation.
We present a novel framework for unsupervised domain adaptation based on the notion of target-domain consistency training.
Our approach is simpler, easier to implement, and more memory-efficient during training.
arXiv Detail & Related papers (2021-05-17T19:36:28Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Consistency Regularization with High-dimensional Non-adversarial
Source-guided Perturbation for Unsupervised Domain Adaptation in Segmentation [15.428323201750144]
BiSIDA employs consistency regularization to efficiently exploit information from the unlabeled target dataset.
BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks.
arXiv Detail & Related papers (2020-09-18T03:26:44Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.