Hybrid diffusion models: combining supervised and generative pretraining for label-efficient fine-tuning of segmentation models
- URL: http://arxiv.org/abs/2408.03433v1
- Date: Tue, 6 Aug 2024 20:19:06 GMT
- Title: Hybrid diffusion models: combining supervised and generative pretraining for label-efficient fine-tuning of segmentation models
- Authors: Bruno Sauvalle, Mathieu Salzmann,
- Abstract summary: We propose a new pretext task, which is to perform simultaneously image denoising and mask prediction on the first domain.
We show that fine-tuning a model pretrained using this approach leads to better results than fine-tuning a similar model trained using either supervised or unsupervised pretraining.
- Score: 55.2480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are considering in this paper the task of label-efficient fine-tuning of segmentation models: We assume that a large labeled dataset is available and allows to train an accurate segmentation model in one domain, and that we have to adapt this model on a related domain where only a few samples are available. We observe that this adaptation can be done using two distinct methods: The first method, supervised pretraining, is simply to take the model trained on the first domain using classical supervised learning, and fine-tune it on the second domain with the available labeled samples. The second method is to perform self-supervised pretraining on the first domain using a generic pretext task in order to get high-quality representations which can then be used to train a model on the second domain in a label-efficient way. We propose in this paper to fuse these two approaches by introducing a new pretext task, which is to perform simultaneously image denoising and mask prediction on the first domain. We motivate this choice by showing that in the same way that an image denoiser conditioned on the noise level can be considered as a generative model for the unlabeled image distribution using the theory of diffusion models, a model trained using this new pretext task can be considered as a generative model for the joint distribution of images and segmentation masks under the assumption that the mapping from images to segmentation masks is deterministic. We then empirically show on several datasets that fine-tuning a model pretrained using this approach leads to better results than fine-tuning a similar model trained using either supervised or unsupervised pretraining only.
Related papers
- Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition [0.19183348587701113]
Transferring the weights of a pre-trained model to assist another task has become a crucial part of modern deep learning.
Our experiments will demonstrate the usefulness of in-domain models and datasets for bird species recognition.
arXiv Detail & Related papers (2024-04-26T08:47:28Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer [13.956618446530559]
This paper proposes a zero-shot domain adaptation method based on diffusion models, called ZoDi.
First, we utilize an off-the-shelf diffusion model to synthesize target-like images by transferring the domain of source images to the target domain.
Secondly, we train the model using both source images and synthesized images with the original representations to learn domain-robust representations.
arXiv Detail & Related papers (2024-03-20T14:58:09Z) - Generating Reliable Pixel-Level Labels for Source Free Domain Adaptation [13.913151437401472]
ReGEN comprises an image-to-image translation network and a segmentation network.
Our workflow generates target-like images using the noisy predictions from the original target domain images.
arXiv Detail & Related papers (2023-07-03T09:44:13Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Set Based Stochastic Subsampling [85.5331107565578]
We propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an textitarbitrary downstream task network.
We show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification.
arXiv Detail & Related papers (2020-06-25T07:36:47Z) - Train No Evil: Selective Masking for Task-Guided Pre-Training [97.03615486457065]
We propose a three-stage framework by adding a task-guided pre-training stage with selective masking between general pre-training and fine-tuning.
We show that our method can achieve comparable or even better performance with less than 50% of cost.
arXiv Detail & Related papers (2020-04-21T03:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.