ENGAGE: Explanation Guided Data Augmentation for Graph Representation
Learning
- URL: http://arxiv.org/abs/2307.01053v1
- Date: Mon, 3 Jul 2023 14:33:14 GMT
- Title: ENGAGE: Explanation Guided Data Augmentation for Graph Representation
Learning
- Authors: Yucheng Shi, Kaixiong Zhou, Ninghao Liu
- Abstract summary: We propose ENGAGE, where explanation guides the contrastive augmentation process to preserve the key parts in graphs.
We also design two data augmentation schemes on graphs for perturbing structural and feature information, respectively.
- Score: 34.23920789327245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent contrastive learning methods, due to their effectiveness in
representation learning, have been widely applied to modeling graph data.
Random perturbation is widely used to build contrastive views for graph data,
which however, could accidentally break graph structures and lead to suboptimal
performance. In addition, graph data is usually highly abstract, so it is hard
to extract intuitive meanings and design more informed augmentation schemes.
Effective representations should preserve key characteristics in data and
abandon superfluous information. In this paper, we propose ENGAGE (ExplaNation
Guided data AuGmEntation), where explanation guides the contrastive
augmentation process to preserve the key parts in graphs and explore removing
superfluous information. Specifically, we design an efficient unsupervised
explanation method called smoothed activation map as the indicator of node
importance in representation learning. Then, we design two data augmentation
schemes on graphs for perturbing structural and feature information,
respectively. We also provide justification for the proposed method in the
framework of information theories. Experiments of both graph-level and
node-level tasks, on various model architectures and on different real-world
graphs, are conducted to demonstrate the effectiveness and flexibility of
ENGAGE. The code of ENGAGE can be found: https://github.com/sycny/ENGAGE.
Related papers
- Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIEL consistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks.
ARIEL is more robust in the face of adversarial attacks.
arXiv Detail & Related papers (2022-08-15T01:24:42Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Adversarial Graph Contrastive Learning with Information Regularization [51.14695794459399]
Contrastive learning is an effective method in graph representation learning.
Data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples.
We propose a simple but effective method, Adversarial Graph Contrastive Learning (ARIEL)
It consistently outperforms the current graph contrastive learning methods in the node classification task over various real-world datasets.
arXiv Detail & Related papers (2022-02-14T05:54:48Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
We propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT)
DGT has spatial-temporal encoding to effectively learn graph topology and capture implicit links.
We show that DGT presents superior performance compared with several state-of-the-art baselines.
arXiv Detail & Related papers (2021-11-19T21:44:23Z) - InfoGCL: Information-Aware Graph Contrastive Learning [26.683911257080304]
We study how graph information is transformed and transferred during the contrastive learning process.
We propose an information-aware graph contrastive learning framework called InfoGCL.
We show for the first time that all recent graph contrastive learning methods can be unified by our framework.
arXiv Detail & Related papers (2021-10-28T21:10:39Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.