論文の概要: Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale
- arxiv url: http://arxiv.org/abs/2307.01482v6
- Date: Sat, 02 Nov 2024 03:19:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:38:12.327894
- Title: Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale
- Title(参考訳): 大規模都市データ予測のための時空間的MLPミキサーの文脈化
- Authors: Tong Nie, Guoyang Qin, Lijun Sun, Wei Ma, Yu Mei, Jian Sun,
- Abstract要約: 本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
- 参考スコア(独自算出の注目度): 54.15522908057831
- License:
- Abstract: Spatiotemporal traffic data (STTD) displays complex correlational structures. Extensive advanced techniques have been designed to capture these structures for effective forecasting. However, because STTD is often massive in scale, practitioners need to strike a balance between effectiveness and efficiency using computationally efficient models. An alternative paradigm based on multilayer perceptron (MLP) called MLP-Mixer has the potential for both simplicity and effectiveness. Taking inspiration from its success in other domains, we propose an adapted version, named NexuSQN, for STTD forecast at scale. We first identify the challenges faced when directly applying MLP-Mixers as seriesand window-wise multivaluedness. To distinguish between spatial and temporal patterns, the concept of ST-contextualization is then proposed. Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks. Furthermore, NexuSQN has demonstrated its versatility across different domains, including energy and environment data, and has been deployed in a collaborative project with Baidu to predict congestion in megacities like Beijing and Shanghai. Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
- Abstract(参考訳): 時空間トラフィックデータ(STTD)は複雑な相関構造を示す。
これらの構造を効果的に予測するために、広範囲にわたる高度な技術が設計されている。
しかし, STTD は大規模化されることが多いため, 計算効率のよいモデルを用いて, 有効性と効率性のバランスをとる必要がある。
MLP-Mixerと呼ばれる多層パーセプトロン(MLP)に基づく代替パラダイムは、単純さと有効性の両方の可能性を秘めている。
他の領域での成功からインスピレーションを得て,大規模なSTTD予測のためのNexuSQNという適応版を提案する。
まず,MLP-Mixersを直接適用する場合の課題を,逐次的およびウィンドウワイドな多値性として識別する。
空間的パターンと時間的パターンを区別するために,ST-contextualizationの概念を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
さらにNexuSQNは、エネルギーや環境データなど、さまざまな領域にまたがる汎用性を実証しており、北京や上海などのメガシティの混雑を予測するためにBaiduと共同プロジェクトとして展開されている。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
関連論文リスト
- Sparse Prototype Network for Explainable Pedestrian Behavior Prediction [60.80524827122901]
Sparse Prototype Network (SPN) は,歩行者の将来の行動,軌道,ポーズを同時に予測するための説明可能な手法である。
モノセマンティリティとクラスタリングの制約によって規則化されたプロトタイプは、一貫性と人間の理解可能な機能を学ぶ。
論文 参考訳(メタデータ) (2024-10-16T03:33:40Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - UniMix: Towards Domain Adaptive and Generalizable LiDAR Semantic Segmentation in Adverse Weather [55.95708988160047]
LiDARセマンティックセグメンテーション(LSS)は自動運転において重要な課題である。
事前のLSS法は、晴れた天候下で同じ領域内のデータセットを調査・評価した。
LSSモデルの適応性と一般化性を高める普遍的手法UniMixを提案する。
論文 参考訳(メタデータ) (2024-04-08T02:02:15Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
RPMixer と呼ばれる全MLP時系列予測アーキテクチャを提案する。
提案手法は,各ブロックがアンサンブルモデルにおいてベース学習者のように振る舞う深層ニューラルネットワークのアンサンブル的挙動に乗じる。
論文 参考訳(メタデータ) (2024-02-16T07:28:59Z) - MLPST: MLP is All You Need for Spatio-Temporal Prediction [40.65579041549435]
交通は典型的な深層モデルに基づく予測手法である。
トラフィック予測のための純粋多層パーセプトロンアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-09-23T12:58:16Z) - Spatial-Temporal Identity: A Simple yet Effective Baseline for
Multivariate Time Series Forecasting [17.84296081495185]
我々は、STGNNほど強力だが、より簡潔で効率的なモデルを設計し、MTS予測の重要な要素について検討する。
本稿では,空間的,時間的両面におけるサンプルの不明瞭さを重要なボトルネックとみなし,MSS予測のための簡易かつ効果的なベースラインを提案する。
これらの結果から,STGNNに制限されることなく,サンプルの不明瞭さを解消できる限り,効率的かつ効率的なモデルを設計できることが示唆された。
論文 参考訳(メタデータ) (2022-08-10T09:25:43Z) - Less Is More: Fast Multivariate Time Series Forecasting with Light
Sampling-oriented MLP Structures [18.592350352298553]
単純な構造をベースとした軽量ディープラーニングアーキテクチャであるLightTSを紹介した。
既存の最先端のメソッドと比較すると、LightTSは5つのメソッドでより良いパフォーマンスを示し、残りの5つで同等のパフォーマンスを示している。
LightTSは堅牢であり、長いシーケンス予測タスクにおける従来のSOTA法よりも精度のばらつきがはるかに小さい。
論文 参考訳(メタデータ) (2022-07-04T04:03:00Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。