Deep Attention Q-Network for Personalized Treatment Recommendation
- URL: http://arxiv.org/abs/2307.01519v1
- Date: Tue, 4 Jul 2023 07:00:19 GMT
- Title: Deep Attention Q-Network for Personalized Treatment Recommendation
- Authors: Simin Ma, Junghwan Lee, Nicoleta Serban, Shihao Yang
- Abstract summary: We propose the Deep Attention Q-Network for personalized treatment recommendations.
The Transformer architecture within a deep reinforcement learning framework efficiently incorporates all past patient observations.
We evaluated the model on real-world sepsis and acute hypotension cohorts, demonstrating its superiority to state-of-the-art models.
- Score: 1.6631602844999724
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tailoring treatment for individual patients is crucial yet challenging in
order to achieve optimal healthcare outcomes. Recent advances in reinforcement
learning offer promising personalized treatment recommendations; however, they
rely solely on current patient observations (vital signs, demographics) as the
patient's state, which may not accurately represent the true health status of
the patient. This limitation hampers policy learning and evaluation, ultimately
limiting treatment effectiveness. In this study, we propose the Deep Attention
Q-Network for personalized treatment recommendations, utilizing the Transformer
architecture within a deep reinforcement learning framework to efficiently
incorporate all past patient observations. We evaluated the model on real-world
sepsis and acute hypotension cohorts, demonstrating its superiority to
state-of-the-art models. The source code for our model is available at
https://github.com/stevenmsm/RL-ICU-DAQN.
Related papers
- Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
We operationalize a safe and interpretable framework to identify optimal treatment regimes.
Our findings support personalized treatment strategies based on a patient's medical history and pharmacological features.
arXiv Detail & Related papers (2023-10-23T19:59:10Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Learning Optimal Treatment Strategies for Sepsis Using Offline
Reinforcement Learning in Continuous Space [4.031538204818658]
We propose a new medical decision model based on historical data to help clinicians recommend the best reference option for real-time treatment.
Our model combines offline reinforcement learning with deep reinforcement learning to address the problem that traditional reinforcement learning in healthcare cannot interact with the environment.
arXiv Detail & Related papers (2022-06-22T16:17:21Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
This paper provides the development processes of the severity assessment model using machine learning techniques.
Model only requires basic patients' basic personal data, allowing for them to judge their own severity.
We aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.
arXiv Detail & Related papers (2021-09-18T19:56:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - An Empirical Study of Representation Learning for Reinforcement Learning
in Healthcare [19.50370829781689]
We use data from septic patients in the MIMIC-III dataset to form representations of a patient state.
We find that sequentially formed state representations facilitate effective policy learning in batch settings.
arXiv Detail & Related papers (2020-11-23T06:37:08Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.