論文の概要: Analyzing Intentional Behavior in Autonomous Agents under Uncertainty
- arxiv url: http://arxiv.org/abs/2307.01532v1
- Date: Tue, 4 Jul 2023 07:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 17:58:38.924502
- Title: Analyzing Intentional Behavior in Autonomous Agents under Uncertainty
- Title(参考訳): 不確実性下における自律エージェントの意図行動分析
- Authors: Filip Cano C\'ordoba, Samuel Judson, Timos Antonopoulos, Katrine
Bj{\o}rner, Nicholas Shoemaker, Scott J. Shapiro, Ruzica Piskac and Bettina
K\"onighofer
- Abstract要約: 不確実な環境での自律的な意思決定の原則的説明責任は、否定的な設計と実際の事故との意図的な結果の区別を必要とする。
本稿では、意図的行動の証拠を定量的に測定し、自律エージェントの行動を分析することを提案する。
ケーススタディでは,本手法が「意図的」交通衝突と「事故的」交通衝突を区別できることを示す。
- 参考スコア(独自算出の注目度): 3.0099979365586265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Principled accountability for autonomous decision-making in uncertain
environments requires distinguishing intentional outcomes from negligent
designs from actual accidents. We propose analyzing the behavior of autonomous
agents through a quantitative measure of the evidence of intentional behavior.
We model an uncertain environment as a Markov Decision Process (MDP). For a
given scenario, we rely on probabilistic model checking to compute the ability
of the agent to influence reaching a certain event. We call this the scope of
agency. We say that there is evidence of intentional behavior if the scope of
agency is high and the decisions of the agent are close to being optimal for
reaching the event. Our method applies counterfactual reasoning to
automatically generate relevant scenarios that can be analyzed to increase the
confidence of our assessment. In a case study, we show how our method can
distinguish between 'intentional' and 'accidental' traffic collisions.
- Abstract(参考訳): 不確実な環境での自律的な意思決定の原則的説明責任は、否定的な設計と実際の事故との意図的な結果の区別を必要とする。
本稿では,意図的行動の証拠を定量的に測定し,自律的エージェントの行動分析を行う。
我々は不確実な環境をマルコフ決定過程(MDP)としてモデル化する。
与えられたシナリオでは、あるイベントに到達したエージェントの能力を計算するために確率論的モデルチェックに依存します。
これを代理店のスコープと呼ぶ。
エージェントのスコープが高く、エージェントの決定がイベントに到達するのに最適に近い場合、意図的な行動の証拠があると言う。
提案手法は,評価の信頼性を高めるために分析可能な関連シナリオを自動的に生成する。
ケーススタディでは,本手法が「意図的」交通衝突と「事故的」交通衝突を区別できることを示す。
関連論文リスト
- Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians [60.22542847840578]
敵対的機械学習の進歩にもかかわらず、敵対者の存在下でのガウスモデルに対する推論は特に過小評価されている。
我々は,意思決定者の条件推論とその後の行動の妨害を希望する自己関心のある攻撃者について,一組の明らかな変数を乱すことで検討する。
検出を避けるため、攻撃者は、破損した証拠の密度によって可否が決定される場合に、攻撃が可否を示すことを望んでいる。
論文 参考訳(メタデータ) (2024-11-21T17:46:55Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
安全マージンを生成するためにプロキシ臨界度メトリクスをどのように活用するかを示す。
Atari 環境での APE-X と A3C からの学習方針に対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-07-25T16:49:54Z) - Reinforcement Learning with a Terminator [80.34572413850186]
我々は, TerMDP のパラメータを学習し, 推定問題の構造を活用し, 状態ワイドな信頼境界を提供する。
我々はこれらを用いて証明可能な効率のよいアルゴリズムを構築し、終端を考慮し、その後悔を抑える。
論文 参考訳(メタデータ) (2022-05-30T18:40:28Z) - Deceptive Decision-Making Under Uncertainty [25.197098169762356]
タスクを遂行しながら,外部の観察者の意図を判断できる自律エージェントの設計について検討する。
エージェントの動作をマルコフ決定プロセスとしてモデル化することにより、エージェントが複数の潜在的な目標を達成するための設定を考える。
本稿では,最大エントロピーの原理に基づいて観測者予測をモデル化し,認識戦略を効率的に生成する手法を提案する。
論文 参考訳(メタデータ) (2021-09-14T14:56:23Z) - Ensemble Quantile Networks: Uncertainty-Aware Reinforcement Learning
with Applications in Autonomous Driving [1.6758573326215689]
強化学習は、自律運転のための意思決定エージェントを作成するために使用できる。
これまでのアプローチではブラックボックスソリューションのみを提供しており、エージェントがその決定に対する自信について情報を提供していない。
本稿では,分布RLとアンサンブルアプローチを組み合わせて完全不確実性推定を行うEnsemble Quantile Networks (EQN)法を提案する。
論文 参考訳(メタデータ) (2021-05-21T10:36:16Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
未知の真のターゲットラベルのプロキシとして、ドメイン不変の予測器のセットを使用します。
結果として生じるリスク見積の誤差は、プロキシモデルのターゲットリスクに依存する。
論文 参考訳(メタデータ) (2020-07-06T17:21:24Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
本稿では,不確実性推定を最先端のニューラルネットワーク手法のクラスに統合する実践的アプローチを提案する。
提案手法は,高次元データに共通する「非オーバーラップ」の状況に優雅に対処できることを示す。
正確なモデリングの不確実性は、過度に自信を持ち、潜在的に有害なレコメンデーションを与えるのを防ぐことができる。
論文 参考訳(メタデータ) (2020-07-01T00:37:41Z) - Tactical Decision-Making in Autonomous Driving by Reinforcement Learning
with Uncertainty Estimation [0.9883261192383611]
強化学習は、自律運転のための戦術的意思決定エージェントを作成するために使用できる。
本稿では,自動走行における意思決定の不確かさを推定するためにベイズRL手法をいかに活用するかを検討する。
論文 参考訳(メタデータ) (2020-04-22T08:22:28Z) - Causal Strategic Linear Regression [5.672132510411465]
信用スコアや学術試験のような多くの予測的な意思決定シナリオでは、意思決定者は、決定ルールを「ゲーム」するためにエージェントの正当性を説明するモデルを構築しなければならない。
私たちは、変更可能な属性の関数として、モデリングエージェントの結果の同時処理に参加します。
3つの異なる意思決定目標を最適化する意思決定ルールを学習するための効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-02-24T03:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。