論文の概要: Learning Lie Group Symmetry Transformations with Neural Networks
- arxiv url: http://arxiv.org/abs/2307.01583v1
- Date: Tue, 4 Jul 2023 09:23:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 17:37:40.842591
- Title: Learning Lie Group Symmetry Transformations with Neural Networks
- Title(参考訳): ニューラルネットワークを用いたリー群対称性変換の学習
- Authors: Alex Gabel, Victoria Klein, Riccardo Valperga, Jeroen S. W. Lamb,
Kevin Webster, Rick Quax, Efstratios Gavves
- Abstract要約: この研究は、データセットに存在する未知の対称性、すなわちリー群対称性変換の発見と特徴付けに焦点を当てている。
私たちのゴールは、変換グループとパラメータ値の分布を特徴づけることです。
その結果、どちらの設定でもアプローチの有効性が示された。
- 参考スコア(独自算出の注目度): 17.49001206996365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of detecting and quantifying the presence of symmetries in
datasets is useful for model selection, generative modeling, and data analysis,
amongst others. While existing methods for hard-coding transformations in
neural networks require prior knowledge of the symmetries of the task at hand,
this work focuses on discovering and characterizing unknown symmetries present
in the dataset, namely, Lie group symmetry transformations beyond the
traditional ones usually considered in the field (rotation, scaling, and
translation). Specifically, we consider a scenario in which a dataset has been
transformed by a one-parameter subgroup of transformations with different
parameter values for each data point. Our goal is to characterize the
transformation group and the distribution of the parameter values. The results
showcase the effectiveness of the approach in both these settings.
- Abstract(参考訳): データセットにおける対称性の存在を検出し定量化する問題は、モデル選択、生成モデリング、データ解析などに有用である。
ニューラルネットワークにおける既存のハードコーディング変換法では、そのタスクの対称性に関する事前の知識を必要とするが、この研究は、データセットに存在する未知の対称性、すなわち、通常フィールドで考慮される従来のもの(回転、スケーリング、翻訳)を超えたリー群対称性変換の発見と特徴付けに焦点を当てている。
具体的には、データポイントごとに異なるパラメータ値を持つ変換の1パラメータサブグループによってデータセットが変換されるシナリオを検討する。
我々の目標は、変換群とパラメータ値の分布を特徴付けることである。
その結果,両環境におけるアプローチの有効性が示された。
関連論文リスト
- Group Crosscoders for Mechanistic Analysis of Symmetry [0.0]
群クロスコーダは、ニューラルネットワークの対称的特徴を体系的に発見し、分析する。
グループクロスコーダは、ニューラルネットワークが対称性を表現する方法に関する体系的な洞察を与えることができることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:47:01Z) - Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
1-パラメータ群で定義された変換に基づく新しい対称性学習アルゴリズムを提案する。
この手法は最小限の帰納バイアスに基づいて構築され、リー群に根付いた一般的な対称性だけでなく、非線形発生器由来の対称性にまで拡張される。
論文 参考訳(メタデータ) (2024-10-29T08:28:23Z) - Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
相対表現はゼロショットモデルの縫合に対する確立されたアプローチである。
相対変換において正規化手順を導入し、非等方的再スケーリングや置換に不変となる。
第二に、クラス内のクラスタリングを促進するトポロジカル正規化損失である、微調整された相対表現におけるトポロジカルデシフィケーションの展開を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:09:22Z) - The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
ニューラル・ネットワーク・アーキテクチャの導入により,ニューラル・パラメータ・対称性の影響について検討する。
我々は,パラメータ空間対称性を低減するために,標準的なニューラルネットワークを改良する2つの手法を開発した。
実験により,パラメータ対称性の経験的影響に関する興味深い観察がいくつか示された。
論文 参考訳(メタデータ) (2024-05-30T16:32:31Z) - Oracle-Preserving Latent Flows [58.720142291102135]
我々はラベル付きデータセット全体にわたって複数の非自明な連続対称性を同時に発見するための方法論を開発する。
対称性変換と対応するジェネレータは、特別に構築された損失関数で訓練された完全連結ニューラルネットワークでモデル化される。
この研究における2つの新しい要素は、縮小次元の潜在空間の使用と、高次元のオラクルに関して不変な変換への一般化である。
論文 参考訳(メタデータ) (2023-02-02T00:13:32Z) - LieGG: Studying Learned Lie Group Generators [1.5293427903448025]
ニューラルネットワークに組み込まれた対称性は、データを保存して学習することで、幅広いタスクに対して非常に有益であるように思える。
本稿では,ニューラルネットワークが学習した対称性を抽出し,ネットワークの不変度を評価する手法を提案する。
論文 参考訳(メタデータ) (2022-10-09T20:42:37Z) - Equivariant Mesh Attention Networks [10.517110532297021]
上述したすべての変換にほぼ同値なメッシュデータに対する注意に基づくアーキテクチャを提案する。
提案したアーキテクチャは,これらの局所的・言語的変換に対して同変であり,従って堅牢であることを確認した。
論文 参考訳(メタデータ) (2022-05-21T19:53:14Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Inverse Learning of Symmetries [71.62109774068064]
2つの潜在部分空間からなるモデルで対称性変換を学ぶ。
我々のアプローチは、情報ボトルネックと連続的な相互情報正規化器の組み合わせに基づいています。
我々のモデルは, 人工的および分子的データセットにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-02-07T13:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。