Robust Hate Speech Detection in Social Media: A Cross-Dataset Empirical
Evaluation
- URL: http://arxiv.org/abs/2307.01680v1
- Date: Tue, 4 Jul 2023 12:22:40 GMT
- Title: Robust Hate Speech Detection in Social Media: A Cross-Dataset Empirical
Evaluation
- Authors: Dimosthenis Antypas and Jose Camacho-Collados
- Abstract summary: We perform a large-scale cross-dataset comparison where we fine-tune language models on different hate speech detection datasets.
This analysis shows how some datasets are more generalisable than others when used as training data.
Experiments show how combining hate speech detection datasets can contribute to the development of robust hate speech detection models.
- Score: 5.16706940452805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The automatic detection of hate speech online is an active research area in
NLP. Most of the studies to date are based on social media datasets that
contribute to the creation of hate speech detection models trained on them.
However, data creation processes contain their own biases, and models
inherently learn from these dataset-specific biases. In this paper, we perform
a large-scale cross-dataset comparison where we fine-tune language models on
different hate speech detection datasets. This analysis shows how some datasets
are more generalisable than others when used as training data. Crucially, our
experiments show how combining hate speech detection datasets can contribute to
the development of robust hate speech detection models. This robustness holds
even when controlling by data size and compared with the best individual
datasets.
Related papers
- Empirical Evaluation of Public HateSpeech Datasets [0.0]
Social media platforms are widely utilised for generating datasets employed in training and evaluating machine learning algorithms for hate speech detection.
Existing public datasets exhibit numerous limitations, hindering the effective training of these algorithms and leading to inaccurate hate speech classification.
This work aims to advance the development of more accurate and reliable machine learning models for hate speech detection.
arXiv Detail & Related papers (2024-06-27T11:20:52Z) - Hate Speech Detection in Limited Data Contexts using Synthetic Data
Generation [1.9506923346234724]
We propose a data augmentation approach that addresses the problem of lack of data for online hate speech detection in limited data contexts.
We present three methods to synthesize new examples of hate speech data in a target language that retains the hate sentiment in the original examples but transfers the hate targets.
Our findings show that a model trained on synthetic data performs comparably to, and in some cases outperforms, a model trained only on the samples available in the target domain.
arXiv Detail & Related papers (2023-10-04T15:10:06Z) - Deepfake audio as a data augmentation technique for training automatic
speech to text transcription models [55.2480439325792]
We propose a framework that approaches data augmentation based on deepfake audio.
A dataset produced by Indians (in English) was selected, ensuring the presence of a single accent.
arXiv Detail & Related papers (2023-09-22T11:33:03Z) - Detect Hate Speech in Unseen Domains using Multi-Task Learning: A Case
Study of Political Public Figures [7.52579126252489]
We propose a new Multi-task Learning pipeline that utilizes MTL to train simultaneously across multiple hate speech datasets.
We show strong results when examining generalization error in train-test splits and substantial improvements when predicting on previously unseen datasets.
We also assemble a novel dataset, dubbed PubFigs, focusing on the problematic speech of American Public Political Figures.
arXiv Detail & Related papers (2022-08-22T21:13:38Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Statistical Analysis of Perspective Scores on Hate Speech Detection [7.447951461558536]
State-of-the-art hate speech classifiers are efficient only when tested on the data with the same feature distribution as training data.
In such a diverse data distribution relying on low level features is the main cause of deficiency due to natural bias in data.
We show that, different hate speech datasets are very similar when it comes to extract their Perspective Scores.
arXiv Detail & Related papers (2021-06-22T17:17:35Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
In adversarial data collection (ADC), a human workforce interacts with a model in real time, attempting to produce examples that elicit incorrect predictions.
Despite ADC's intuitive appeal, it remains unclear when training on adversarial datasets produces more robust models.
arXiv Detail & Related papers (2021-06-02T00:48:33Z) - Trawling for Trolling: A Dataset [56.1778095945542]
We present a dataset that models trolling as a subcategory of offensive content.
The dataset has 12,490 samples, split across 5 classes; Normal, Profanity, Trolling, Derogatory and Hate Speech.
arXiv Detail & Related papers (2020-08-02T17:23:55Z) - Towards Hate Speech Detection at Large via Deep Generative Modeling [4.080068044420974]
Hate speech detection is a critical problem in social media platforms.
We present a dataset of 1 million realistic hate and non-hate sequences, produced by a deep generative language model.
We demonstrate consistent and significant performance improvements across five public hate speech datasets.
arXiv Detail & Related papers (2020-05-13T15:25:59Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.