Dual symplectic classical circuits: An exactly solvable model of
many-body chaos
- URL: http://arxiv.org/abs/2307.01786v2
- Date: Wed, 24 Jan 2024 16:16:43 GMT
- Title: Dual symplectic classical circuits: An exactly solvable model of
many-body chaos
- Authors: Alexios Christopoulos, Andrea De Luca, D L Kovrizhin, Toma\v{z} Prosen
- Abstract summary: We prove that two-point dynamical correlation functions are non-vanishing only along the edges of the light cones.
We test our theory in a specific family of dual-symplectic circuits, describing the dynamics of a classical Floquet spin chain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a general exact method of calculating dynamical correlation
functions in dual symplectic brick-wall circuits in one dimension. These are
deterministic classical many-body dynamical systems which can be interpreted in
terms of symplectic dynamics in two orthogonal (time and space) directions. In
close analogy with quantum dual-unitary circuits, we prove that two-point
dynamical correlation functions are non-vanishing only along the edges of the
light cones. The dynamical correlations are exactly computable in terms of a
one-site Markov transfer operator, which is generally of infinite
dimensionality. We test our theory in a specific family of dual-symplectic
circuits, describing the dynamics of a classical Floquet spin chain.
Remarkably, expressing these models in the form of a composition of rotations
leads to a transfer operator with a block diagonal form in the basis of
spherical harmonics. This allows us to obtain analytical predictions for simple
local observables. We demonstrate the validity of our theory by comparison with
Monte Carlo simulations, displaying excellent agreement with the latter for
different choices of observables.
Related papers
- Necessity of orthogonal basis vectors for the two-anyon problem in one-dimensional lattice [4.5808056387997516]
We solve the finite difference equations for the two-anyon state in the one-dimensional lattice.
Our findings are vital for quantum simulations of few-body physics with anyons in the lattice.
arXiv Detail & Related papers (2024-05-13T01:42:26Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - From Lindblad master equations to Langevin dynamics and back [0.0]
A case study of the non-equilibrium dynamics of open quantum systems is presented.
The quantum Langevin equations are derived from an identical set of physical criteria.
The associated Lindblad equations are derived but only one of them is completely positive.
arXiv Detail & Related papers (2023-05-10T16:59:48Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - From dual-unitary to biunitary: a 2-categorical model for
exactly-solvable many-body quantum dynamics [0.0]
Prosen has recently described an alternative model called 'dual-unitary interactions round-a-face'
We present a 2-categorical framework that simultaneously generalizes these two existing models.
arXiv Detail & Related papers (2023-02-14T19:00:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - False signals of chaos from quantum probes [0.0]
We demonstrate that two-time correlation functions, which are generalizations of out-of-time-ordered correlators, can show 'false-flags' of chaos.
We analyze a system of bosons trapped in a double-well potential and probed by a quantum dot.
arXiv Detail & Related papers (2021-08-20T22:36:06Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.