論文の概要: DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation
- arxiv url: http://arxiv.org/abs/2307.01831v1
- Date: Tue, 4 Jul 2023 17:15:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 16:19:07.935381
- Title: DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation
- Title(参考訳): dit-3d:3次元形状生成のための平滑拡散トランスの検討
- Authors: Shentong Mo, Enze Xie, Ruihang Chu, Lewei Yao, Lanqing Hong, Matthias
Nie{\ss}ner, Zhenguo Li
- Abstract要約: 本稿では,3次元形状生成のための新しい拡散変換器,すなわちDiT-3Dを提案する。
既存のU-Netアプローチと比較して、私たちのDiT-3Dはモデルサイズがよりスケーラブルで、より高品質な世代を生み出す。
ShapeNetデータセットの実験結果から,提案したDiT-3Dが最先端性能を実現することが示された。
- 参考スコア(独自算出の注目度): 49.22974835756199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Diffusion Transformers (e.g., DiT) have demonstrated their powerful
effectiveness in generating high-quality 2D images. However, it is still being
determined whether the Transformer architecture performs equally well in 3D
shape generation, as previous 3D diffusion methods mostly adopted the U-Net
architecture. To bridge this gap, we propose a novel Diffusion Transformer for
3D shape generation, namely DiT-3D, which can directly operate the denoising
process on voxelized point clouds using plain Transformers. Compared to
existing U-Net approaches, our DiT-3D is more scalable in model size and
produces much higher quality generations. Specifically, the DiT-3D adopts the
design philosophy of DiT but modifies it by incorporating 3D positional and
patch embeddings to adaptively aggregate input from voxelized point clouds. To
reduce the computational cost of self-attention in 3D shape generation, we
incorporate 3D window attention into Transformer blocks, as the increased 3D
token length resulting from the additional dimension of voxels can lead to high
computation. Finally, linear and devoxelization layers are used to predict the
denoised point clouds. In addition, our transformer architecture supports
efficient fine-tuning from 2D to 3D, where the pre-trained DiT-2D checkpoint on
ImageNet can significantly improve DiT-3D on ShapeNet. Experimental results on
the ShapeNet dataset demonstrate that the proposed DiT-3D achieves
state-of-the-art performance in high-fidelity and diverse 3D point cloud
generation. In particular, our DiT-3D decreases the 1-Nearest Neighbor Accuracy
of the state-of-the-art method by 4.59 and increases the Coverage metric by
3.51 when evaluated on Chamfer Distance.
- Abstract(参考訳): 最近の拡散変換器(例えば、DiT)は、高品質な2D画像を生成するための強力な効果を示している。
しかし,従来の3次元拡散法は主にU-Netアーキテクチャを採用するため,トランスフォーマーアーキテクチャが3次元形状生成において同等に機能するかどうかはまだ定かではない。
このギャップを埋めるために, 平らな変換器を用いて渦化点雲のデノナイジング過程を直接操作できる新しい3次元形状生成用拡散変換器, DiT-3Dを提案する。
既存のU-Netアプローチと比較して、私たちのDiT-3Dはモデルサイズがよりスケーラブルで、より高品質な世代を生み出す。
具体的には、DiT-3D は DiT の設計哲学を採用するが、3D の位置とパッチの埋め込みを組み込んで、voxelized point cloud からの入力を適応的に集約することで変更する。
3次元形状生成における自己注意の計算コストを低減するため、3次元ウィンドウアテンションをトランスフォーマーブロックに組み込む。
最後に、偏光点雲の予測に線形および脱酸化層を用いる。
また、2Dから3Dへの効率的な微調整もサポートしており、ImageNetのトレーニング済みのDiT-2DチェックポイントはShapeNetのDiT-3Dを大幅に改善することができる。
ShapeNetデータセットの実験結果から、提案したDiT-3Dは、高忠実で多様な3Dポイントクラウド生成において最先端の性能を達成することが示された。
特に,我々のdit-3dは,最先端手法の1ネアレスト近傍の精度を4.59パーセント低下させ,シャンファー距離で評価した場合のカバレッジメートル法を3.51パーセント向上させる。
関連論文リスト
- Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation [27.43973967994717]
MT3Dは高忠実度3Dオブジェクトを利用して視点バイアスを克服するテキスト・ツー・3D生成モデルである。
生成した2次元画像が基本形状と構造を保持することを保証するために,高品質な3次元モデルから導出される深度マップを制御信号として利用する。
3Dアセットから幾何学的詳細を取り入れることで、MT3Dは多様で幾何学的に一貫したオブジェクトを作成することができる。
論文 参考訳(メタデータ) (2024-08-12T06:25:44Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer [26.375689838055774]
Direct3Dは、Wildの入力画像にスケーラブルなネイティブな3D生成モデルである。
提案手法は, 直接3次元変分オートエンコーダ(D3D-VAE)と直接3次元拡散変換器(D3D-DiT)の2成分からなる。
論文 参考訳(メタデータ) (2024-05-23T17:49:37Z) - Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding [83.63231467746598]
我々は,Any2Pointというパラメータ効率のよい大規模モデル(ビジョン,言語,音声)を3次元理解に活用する手法を紹介した。
入力された3Dポイントと元の1Dまたは2D位置との相関関係を示す3D-to-any (1Dまたは2D)仮想プロジェクション戦略を提案する。
論文 参考訳(メタデータ) (2024-04-11T17:59:45Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
本稿では,LN3Diffと呼ばれる新しいフレームワークを導入し,統一された3次元拡散パイプラインに対処する。
提案手法では,3次元アーキテクチャと変分オートエンコーダを用いて,入力画像を構造化されたコンパクトな3次元潜在空間に符号化する。
3次元生成のためのShapeNetの最先端性能を実現し,モノクロ3次元再構成と条件付き3次元生成において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-18T17:54:34Z) - IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality
3D Generation [96.32684334038278]
本稿では,テキスト・ツー・3Dモデルの設計空間について検討する。
画像生成装置の代わりに映像を考慮し、マルチビュー生成を大幅に改善する。
IM-3Dは,2次元ジェネレータネットワーク10-100xの評価回数を削減する。
論文 参考訳(メタデータ) (2024-02-13T18:59:51Z) - Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D
priors [16.93758384693786]
双方向拡散(Bidirectional Diffusion、BiDiff)は、3次元と2次元の拡散プロセスの両方を組み込んだ統合フレームワークである。
我々のモデルは高品質で多種多様でスケーラブルな3D生成を実現する。
論文 参考訳(メタデータ) (2023-12-07T10:00:04Z) - Points-to-3D: Bridging the Gap between Sparse Points and
Shape-Controllable Text-to-3D Generation [16.232803881159022]
本稿では,スパースで自由な3Dポイントとリアルな形状制御可能な3D生成とのギャップを埋めるために,Points-to-3Dのフレキシブルなフレームワークを提案する。
Points-to-3Dの基本的な考え方は、テキストから3D生成を導くために制御可能なスパース3Dポイントを導入することである。
論文 参考訳(メタデータ) (2023-07-26T02:16:55Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。