Deep Features for Contactless Fingerprint Presentation Attack Detection:
Can They Be Generalized?
- URL: http://arxiv.org/abs/2307.01845v1
- Date: Tue, 4 Jul 2023 17:46:20 GMT
- Title: Deep Features for Contactless Fingerprint Presentation Attack Detection:
Can They Be Generalized?
- Authors: Hailin Li and Raghavendra Ramachandra
- Abstract summary: contactless fingerprint-verification systems are vulnerable to presentation attacks.
We present a comparative study on the generalizability of seven different pre-trained Convolutional Neural Networks (CNN) and a Vision Transformer (ViT) to reliably detect presentation attacks.
- Score: 6.668147787950981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid evolution of high-end smartphones with advanced high-resolution
cameras has resulted in contactless capture of fingerprint biometrics that are
more reliable and suitable for verification. Similar to other biometric
systems, contactless fingerprint-verification systems are vulnerable to
presentation attacks. In this paper, we present a comparative study on the
generalizability of seven different pre-trained Convolutional Neural Networks
(CNN) and a Vision Transformer (ViT) to reliably detect presentation attacks.
Extensive experiments were carried out on publicly available smartphone-based
presentation attack datasets using four different Presentation Attack
Instruments (PAI). The detection performance of the eighth deep feature
technique was evaluated using the leave-one-out protocol to benchmark the
generalization performance for unseen PAI. The obtained results indicated the
best generalization performance with the ResNet50 CNN.
Related papers
- Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
Speech deepfakes pose a significant threat to personal security and content authenticity.
We introduce a novel approach for enhancing speech deepfake detection performance using a Mixture of Experts architecture.
arXiv Detail & Related papers (2024-09-24T13:24:03Z) - DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection [1.9573380763700712]
A presentation attack can be performed by creating a spoof of a user's fingerprint with or without their consent.
This paper presents a dynamic ensemble of deep CNN and handcrafted features to detect presentation attacks.
We have validated our proposed method on benchmark databases from the Liveness Detection Competition.
arXiv Detail & Related papers (2023-08-19T13:46:49Z) - Presentation Attack Detection with Advanced CNN Models for
Noncontact-based Fingerprint Systems [5.022332693793425]
We develop a Presentation attack detection (PAD) dataset of more than 7500 four-finger images.
PAD accuracy of Attack presentation classification error rate (APCER) 0.14% and Bonafide presentation classification error rate (BPCER) 0.18%.
arXiv Detail & Related papers (2023-03-09T18:01:10Z) - Face Presentation Attack Detection [59.05779913403134]
Face recognition technology has been widely used in daily interactive applications such as checking-in and mobile payment.
However, its vulnerability to presentation attacks (PAs) limits its reliable use in ultra-secure applicational scenarios.
arXiv Detail & Related papers (2022-12-07T14:51:17Z) - AFR-Net: Attention-Driven Fingerprint Recognition Network [47.87570819350573]
We improve initial studies on the use of vision transformers (ViT) for biometric recognition, including fingerprint recognition.
We propose a realignment strategy using local embeddings extracted from intermediate feature maps within the networks to refine the global embeddings in low certainty situations.
This strategy can be applied as a wrapper to any existing deep learning network (including attention-based, CNN-based, or both) to boost its performance.
arXiv Detail & Related papers (2022-11-25T05:10:39Z) - Federated Test-Time Adaptive Face Presentation Attack Detection with
Dual-Phase Privacy Preservation [100.69458267888962]
Face presentation attack detection (fPAD) plays a critical role in the modern face recognition pipeline.
Due to legal and privacy issues, training data (real face images and spoof images) are not allowed to be directly shared between different data sources.
We propose a Federated Test-Time Adaptive Face Presentation Attack Detection with Dual-Phase Privacy Preservation framework.
arXiv Detail & Related papers (2021-10-25T02:51:05Z) - Aurora Guard: Reliable Face Anti-Spoofing via Mobile Lighting System [103.5604680001633]
Anti-spoofing against high-resolution rendering replay of paper photos or digital videos remains an open problem.
We propose a simple yet effective face anti-spoofing system, termed Aurora Guard (AG)
arXiv Detail & Related papers (2021-02-01T09:17:18Z) - Texture-based Presentation Attack Detection for Automatic Speaker
Verification [21.357976330739245]
This paper reports our exploration of texture descriptors applied to the analysis of speech spectrogram images.
In particular, we propose a common fisher vector feature space based on a generative model.
At most, 16 in 100 bona fide presentations are rejected whereas only one in 100 attack presentations are accepted.
arXiv Detail & Related papers (2020-10-08T15:03:29Z) - Deep convolutional neural networks for face and iris presentation attack
detection: Survey and case study [0.5801044612920815]
Cross-dataset evaluation on face PAD showed better generalization than state of the art.
We propose the use of a single deep network trained to detect both face and iris attacks.
arXiv Detail & Related papers (2020-04-25T02:06:19Z) - Fingerprint Presentation Attack Detection: A Sensor and Material
Agnostic Approach [44.46178415547532]
We propose a robust presentation attack detection (PAD) solution with improved cross-material and cross-sensor generalization.
Specifically, we build on any CNN-based architecture trained for fingerprint spoof detection combined with cross-material spoof generalization.
We also incorporate adversarial representation learning (ARL) in deep neural networks (DNN) to learn sensor and material invariant representations for PAD.
arXiv Detail & Related papers (2020-04-06T19:03:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.