DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection
- URL: http://arxiv.org/abs/2308.10015v4
- Date: Sat, 17 Aug 2024 14:24:20 GMT
- Title: DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection
- Authors: Anuj Rai, Parsheel Kumar Tiwari, Jyotishna Baishya, Ram Prakash Sharma, Somnath Dey,
- Abstract summary: A presentation attack can be performed by creating a spoof of a user's fingerprint with or without their consent.
This paper presents a dynamic ensemble of deep CNN and handcrafted features to detect presentation attacks.
We have validated our proposed method on benchmark databases from the Liveness Detection Competition.
- Score: 1.9573380763700712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic fingerprint recognition systems suffer from the threat of presentation attacks due to their wide range of deployment in areas including national borders and commercial applications. A presentation attack can be performed by creating a spoof of a user's fingerprint with or without their consent. This paper presents a dynamic ensemble of deep CNN and handcrafted features to detect presentation attacks in known-material and unknown-material protocols of the liveness detection competition. The proposed presentation attack detection model, in this way, utilizes the capabilities of both deep CNN and handcrafted features techniques and exhibits better performance than their individual performances. We have validated our proposed method on benchmark databases from the Liveness Detection Competition in 2015, 2017, and 2019, yielding overall accuracy of 96.10\%, 96.49\%, and 94.99\% on them, respectively. The proposed method outperforms state-of-the-art methods in terms of classification accuracy.
Related papers
- Contactless Fingerprint Biometric Anti-Spoofing: An Unsupervised Deep
Learning Approach [0.0]
We introduce an innovative anti-spoofing approach that combines an unsupervised autoencoder with a convolutional block attention module.
The scheme has achieved an average BPCER of 0.96% with an APCER of 1.6% for presentation attacks involving various types of spoofed samples.
arXiv Detail & Related papers (2023-11-07T17:19:59Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - An Open Patch Generator based Fingerprint Presentation Attack Detection
using Generative Adversarial Network [3.5558308387389626]
Presentation Attack (PA) or spoofing is one of the threats caused by presenting a spoof of a genuine fingerprint to the sensor of Automatic Fingerprint Recognition Systems (AFRS)
This paper proposes a CNN based technique that uses a Generative Adversarial Network (GAN) to augment the dataset with spoof samples generated from the proposed Open Patch Generator (OPG)
An overall accuracy of 96.20%, 94.97%, and 92.90% has been achieved on the LivDet 2015, 2017, and 2019 databases, respectively under the LivDet protocol scenarios.
arXiv Detail & Related papers (2023-06-06T10:52:06Z) - EXPRESSNET: An Explainable Residual Slim Network for Fingerprint
Presentation Attack Detection [3.6296396308298795]
Presentation attack is a challenging issue that persists in the security of automatic fingerprint recognition systems.
This paper proposes a novel explainable residual slim network that detects the presentation attack by representing the visual features in the input fingerprint sample.
arXiv Detail & Related papers (2023-05-16T12:29:50Z) - MoSFPAD: An end-to-end Ensemble of MobileNet and Support Vector
Classifier for Fingerprint Presentation Attack Detection [2.733700237741334]
This paper proposes a novel endtoend model to detect fingerprint attacks.
The proposed model incorporates MobileNet as a feature extractor and a Support Vector as a classifier.
The performance of the proposed model is compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-02T18:27:48Z) - Attacking Face Recognition with T-shirts: Database, Vulnerability
Assessment and Detection [0.0]
We propose a new T-shirt Face Presentation Attack database of 1,608 T-shirt attacks using 100 unique presentation attack instruments.
We show that this type of attack can compromise the security of face recognition systems and that some state-of-the-art attack detection mechanisms fail to robustly generalize to the new attacks.
arXiv Detail & Related papers (2022-11-14T14:11:23Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - A high performance fingerprint liveness detection method based on
quality related features [66.41574316136379]
The system is tested on a highly challenging database comprising over 10,500 real and fake images.
The proposed solution proves to be robust to the multi-scenario dataset, and presents an overall rate of 90% correctly classified samples.
arXiv Detail & Related papers (2021-11-02T21:09:39Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
We have proposed a deep learning-based network termed as textitMixNet to detect presentation attacks.
The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category.
arXiv Detail & Related papers (2020-10-25T23:01:13Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.