Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
- URL: http://arxiv.org/abs/2307.02075v4
- Date: Wed, 02 Jul 2025 01:04:31 GMT
- Title: Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
- Authors: Qijie Ding, Jie Yin, Daokun Zhang, Junbin Gao,
- Abstract summary: We propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA)<n>UPL-EA explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment.<n>Our results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines.
- Score: 30.407534668054286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To circumvent the shortage of seed alignments provided for training, recent EA models utilize pseudo-labeling strategies to iteratively add unaligned entity pairs predicted with high confidence to the seed alignments for model training. However, the adverse impact of confirmation bias during pseudo-labeling has been largely overlooked, thus hindering entity alignment performance. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to determine entity correspondences and reduce erroneous matches across two KGs. An effective criterion is derived to infer pseudo-labeled alignments that satisfy one-to-one correspondences; (2) Parallel pseudo-label ensembling refines pseudo-labeled alignments by combining predictions over multiple models independently trained in parallel. The ensembled pseudo-labeled alignments are thereafter used to augment seed alignments to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. Our extensive results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines and its utility as a general pseudo-labeling framework for entity alignment.
Related papers
- Prototype-Guided Pseudo-Labeling with Neighborhood-Aware Consistency for Unsupervised Adaptation [12.829638461740759]
In unsupervised adaptation for vision-language models such as CLIP, pseudo-labels from zero-shot predictions often exhibit significant noise.<n>We propose a novel adaptive pseudo-labeling framework that enhances CLIP's adaptation performance by integrating prototype consistency and neighborhood-based consistency.<n>Our method achieves state-of-the-art performance in unsupervised adaptation scenarios, delivering more accurate pseudo-labels while maintaining computational efficiency.
arXiv Detail & Related papers (2025-07-22T19:08:24Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
We propose a novel localization algorithm that adapts well-established ground truth estimation methods.
Our algorithm also shows superior performance during training on the TexBiG dataset.
arXiv Detail & Related papers (2023-09-18T13:08:44Z) - Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech
Recognition [49.42732949233184]
When labeled data is insufficient, semi-supervised learning with the pseudo-labeling technique can significantly improve the performance of automatic speech recognition.
Taking noisy labels as ground-truth in the loss function results in suboptimal performance.
We propose a novel framework named alternative pseudo-labeling to tackle the issue of noisy pseudo-labels.
arXiv Detail & Related papers (2023-08-12T12:13:52Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
We propose a Ambiguity-Resistant Semi-supervised Learning (ARSL) for one-stage detectors.
Joint-Confidence Estimation (JCE) is proposed to quantifies the classification and localization quality of pseudo labels.
ARSL effectively mitigates the ambiguities and achieves state-of-the-art SSOD performance on MS COCO and PASCAL VOC.
arXiv Detail & Related papers (2023-03-27T07:46:58Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Conflict-Aware Pseudo Labeling via Optimal Transport for Entity Alignment [6.39671030369729]
We propose a novel Conflict-aware Pseudo Labeling via Optimal Transport model (CPL-OT) for entity alignment.<n>CPL-OT is composed of two key components -- entity embedding learning with global-local aggregation and iterative conflict-aware pseudo labeling.<n>Experiments on benchmark datasets validate the superiority of CPL-OT over state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-05T09:14:01Z) - CLS: Cross Labeling Supervision for Semi-Supervised Learning [9.929229055862491]
Cross Labeling Supervision ( CLS) is a framework that generalizes the typical pseudo-labeling process.
CLS allows the creation of both pseudo and complementary labels to support both positive and negative learning.
arXiv Detail & Related papers (2022-02-17T08:09:40Z) - Multi-Label Gold Asymmetric Loss Correction with Single-Label Regulators [6.129273021888717]
We propose a novel Gold Asymmetric Loss Correction with Single-Label Regulators (GALC-SLR) that operates robust against noisy labels.
GALC-SLR estimates the noise confusion matrix using single-label samples, then constructs an asymmetric loss correction via estimated confusion matrix to avoid overfitting to the noisy labels.
Empirical results show that our method outperforms the state-of-the-art original asymmetric loss multi-label classifier under all corruption levels.
arXiv Detail & Related papers (2021-08-04T12:57:29Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
This paper addresses imbalanced semi-supervised learning, where heavily biased pseudo-labels can harm the model performance.
We propose a general pseudo-labeling framework to address the bias motivated by this observation.
We term the novel pseudo-labeling framework for imbalanced SSL as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label.
arXiv Detail & Related papers (2021-06-10T11:58:25Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Cycle Self-Training for Domain Adaptation [85.14659717421533]
Cycle Self-Training (CST) is a principled self-training algorithm that enforces pseudo-labels to generalize across domains.
CST recovers target ground truth, while both invariant feature learning and vanilla self-training fail.
Empirical results indicate that CST significantly improves over prior state-of-the-arts in standard UDA benchmarks.
arXiv Detail & Related papers (2021-03-05T10:04:25Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative
Adversarial Network [51.84251358009803]
We present a novel self-supervised learning approach for conditional generative adversarial networks (GANs) under a semi-supervised setting.
We perform augmentation by randomly sampling sensible labels from the label space of the few labelled examples available.
Our method surpasses the baseline with only 20% of the labelled examples used to train the baseline.
arXiv Detail & Related papers (2020-06-11T17:14:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.