Conflict-Aware Pseudo Labeling via Optimal Transport for Entity Alignment
- URL: http://arxiv.org/abs/2209.01847v3
- Date: Sat, 31 May 2025 07:55:51 GMT
- Title: Conflict-Aware Pseudo Labeling via Optimal Transport for Entity Alignment
- Authors: Qijie Ding, Daokun Zhang, Jie Yin,
- Abstract summary: We propose a novel Conflict-aware Pseudo Labeling via Optimal Transport model (CPL-OT) for entity alignment.<n>CPL-OT is composed of two key components -- entity embedding learning with global-local aggregation and iterative conflict-aware pseudo labeling.<n>Experiments on benchmark datasets validate the superiority of CPL-OT over state-of-the-art baselines.
- Score: 6.39671030369729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity alignment aims to discover unique equivalent entity pairs with the same meaning across different knowledge graphs (KGs). Existing models have focused on projecting KGs into a latent embedding space so that inherent semantics between entities can be captured for entity alignment. However, the adverse impacts of alignment conflicts have been largely overlooked during training, thereby limiting the entity alignment performance. To address this issue, we propose a novel Conflict-aware Pseudo Labeling via Optimal Transport model (CPL-OT) for entity alignment. The key idea is to iteratively pseudo-label alignment pairs empowered with conflict-aware optimal transport (OT) modeling to boost the precision of entity alignment. CPL-OT is composed of two key components -- entity embedding learning with global-local aggregation and iterative conflict-aware pseudo labeling -- that mutually reinforce each other. To mitigate alignment conflicts during pseudo labeling, we propose to use optimal transport as an effective means to warrant one-to-one entity alignment between two KGs with the minimal overall transport cost. Extensive experiments on benchmark datasets validate the superiority of CPL-OT over state-of-the-art baselines under both settings with and without prior alignment seeds.
Related papers
- Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
Unsupervised person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning.
Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning.
We propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up objective for specific fine-grained patterns emphasized by each modality.
arXiv Detail & Related papers (2025-04-27T13:58:12Z) - RAU: Towards Regularized Alignment and Uniformity for Representation Learning in Recommendation [7.193305599721105]
We propose Regularized Alignment and Uniformity (RAU) to cope with sparse alignment and uneven uniformity issues.
RAU consists of two novel regularization methods for alignment and uniformity to learn better user/item representation.
arXiv Detail & Related papers (2025-03-24T03:03:21Z) - SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment [13.487673375206276]
This paper presents a soft label propagation framework that integrates multi-source data and iterative seed enhancement.
A bidirectional weighted joint loss function is implemented, which reduces the distance between positive samples and differentially processes negative samples.
Our method outperforms existing semi-supervised approaches, as evidenced by superior results on multiple datasets.
arXiv Detail & Related papers (2024-10-28T04:50:46Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - Semi-DETR: Semi-Supervised Object Detection with Detection Transformers [105.45018934087076]
We analyze the DETR-based framework on semi-supervised object detection (SSOD)
We present Semi-DETR, the first transformer-based end-to-end semi-supervised object detector.
Our method outperforms all state-of-the-art methods by clear margins.
arXiv Detail & Related papers (2023-07-16T16:32:14Z) - Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for
Entity Alignment [29.18600512063287]
We propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA)
UPL-EA explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment.
The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated.
arXiv Detail & Related papers (2023-07-05T07:32:34Z) - From Alignment to Entailment: A Unified Textual Entailment Framework for
Entity Alignment [17.70562397382911]
Existing methods usually encode the triples of entities as embeddings and learn to align the embeddings.
We transform both triples into unified textual sequences, and model the EA task as a bi-directional textual entailment task.
Our approach captures the unified correlation pattern of two kinds of information between entities, and explicitly models the fine-grained interaction between original entity information.
arXiv Detail & Related papers (2023-05-19T08:06:50Z) - Optimizing Bi-Encoder for Named Entity Recognition via Contrastive
Learning [80.36076044023581]
We present an efficient bi-encoder framework for named entity recognition (NER)
We frame NER as a metric learning problem that maximizes the similarity between the vector representations of an entity mention and its type.
A major challenge to this bi-encoder formulation for NER lies in separating non-entity spans from entity mentions.
arXiv Detail & Related papers (2022-08-30T23:19:04Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Semi-constraint Optimal Transport for Entity Alignment with Dangling
Cases [6.755145435406154]
We propose an unsupervised method called Semi-constraint Optimal Transport for Entity Alignment in Dangling cases (SoTead)
Our main idea is to model the entity alignment between two KGs as an optimal transport problem from one KG's entities to the others.
In the experimental part, we first show the superiority of SoTead on a commonly-used entity alignment dataset.
arXiv Detail & Related papers (2022-03-11T04:20:18Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent
Space Distribution Matching in WAE [51.09507030387935]
Wasserstein autoencoder (WAE) shows that matching two distributions is equivalent to minimizing a simple autoencoder (AE) loss under the constraint that the latent space of this AE matches a pre-specified prior distribution.
We propose to use the contrastive learning framework that has been shown to be effective for self-supervised representation learning, as a means to resolve this problem.
We show that using the contrastive learning framework to optimize the WAE loss achieves faster convergence and more stable optimization compared with existing popular algorithms for WAE.
arXiv Detail & Related papers (2021-10-19T22:55:47Z) - Reinforcement Learning based Collective Entity Alignment with Adaptive
Features [35.04861875266298]
We propose a reinforcement learning (RL) based model to align entities collectively.
Under the RL framework, we devise the coherence and exclusiveness constraints to characterize the interdependence and collective alignment.
Our proposal is evaluated on both cross-lingual and mono-lingual EA benchmarks and compared against state-of-the-art solutions.
arXiv Detail & Related papers (2021-01-05T05:04:09Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.