論文の概要: Imaging of high-frequency electromagnetic field by multipulse sensing
using nitrogen vacancy centers in diamond
- arxiv url: http://arxiv.org/abs/2307.02089v1
- Date: Wed, 5 Jul 2023 07:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 14:44:36.845556
- Title: Imaging of high-frequency electromagnetic field by multipulse sensing
using nitrogen vacancy centers in diamond
- Title(参考訳): ダイヤモンド中の窒素空洞中心を用いたマルチパルスセンシングによる高周波電磁場のイメージング
- Authors: Shintaro Nomura, Hideyuki Watanabe, and Satoshi Kashiwaya
- Abstract要約: ダイヤモンドチップを用いた高周波電波のイメージングにマイクロ波場の近接場向上を適用した。
パルス長が短いため、19.23MHzの周波数場検出にマルチパルスダイナミックデカップリング法を用いることができる。
- 参考スコア(独自算出の注目度): 0.22940141855172028
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Near-field enhancement of the microwave field is applied for imaging high
frequency radio field using a diamond chip with an $n$-doped isotopically
purified diamond layer grown by microwave plasma assisted chemical vapor
deposition. A short $\pi$ pulse length enables us to utilize a multipulse
dynamic decoupling method for detection of radio frequency field at 19.23 MHz.
An extraordinary frequency resolution of the external magnetic field detection
is achieved by using amplitude-shaped control pulses. Our method opens up the
possibility for high-frequency-resolution RF imaging at $\mu$m spatial
resolution using nitrogen vacancy centers in diamond.
- Abstract(参考訳): マイクロ波プラズマ支援化学気相堆積法で作製したダイヤモンド層をドープしたダイヤモンドチップを用いて高周波電波場を撮像するマイクロ波場の近接場強調法を応用した。
短い$\pi$パルス長は、19.23MHzの周波数場検出にマルチパルスダイナミックデカップリング法を利用することができる。
振幅形制御パルスを用いて外部磁場検出の異常周波数分解能を実現する。
提案手法は, ダイヤモンド中の窒素空孔中心を用いた高周波数分解能RFイメージングの可能性を明らかにする。
関連論文リスト
- Multichannel, ultra-wideband Rydberg Electrometry with an Optical Frequency Comb [39.876383980625235]
3光子Rydberg原子電気測定のための結合レーザーとして,中赤外・周波数型光周波数コムを用いた。
ワイドバンド多重化のためのこの手法の汎用性と柔軟性は、ライドベルク電気測定の分野における変換効果を期待できる。
論文 参考訳(メタデータ) (2024-09-09T19:22:28Z) - Extending Radiowave Frequency Detection Range with Dressed States of Solid-State Spin Ensembles [0.0]
固体スピン欠陥を用いた量子センサは、高周波磁場の検出に優れる。
PDDプロトコルは一般的に適用され、RF信号に対する感度を高める。
連続的動的デカップリングスキームに基づく代替手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T17:35:55Z) - Quantum Diamond Microscope for Narrowband Magnetic Imaging with High Spatial and Spectral Resolution [1.7728122624261802]
量子ダイヤモンド顕微鏡(QDM)は、最近開発されたマイクロスケールの空間分解能を持つ磁場の近接場イメージング技術である。
本発明の機器は、空間分解能$approx2,mathrmmu m$, field-of-view $approx300times300,mathrmmu m2$, and per-pixel sensitivity to narrowband field $sim1,$nT$$$$$Hz$-1/2$を有する。
論文 参考訳(メタデータ) (2024-06-06T15:57:53Z) - Mid-infrared spectroscopy with a broadly tunable thin-film lithium
niobate optical parametric oscillator [45.82374977939355]
デバイスは3.2ミクロンで25mWの赤外線光を生成し、電力変換効率は15%である。
メタンとアンモニアのスペクトルを測定することで装置のチューニングと性能を実証する。
論文 参考訳(メタデータ) (2023-07-09T15:08:35Z) - Localized Nitrogen-Vacancy centers generated by low-repetition rate
fs-laser pulses [0.0]
窒素空孔(NV)中心は、量子技術とナノセンシングのプラットフォームとして最も興味深いものの一つである。
伝統的に、合成ダイヤモンドには高エネルギーの電子や窒素イオンが照射され、これらの色中心を生成する。
NV中心の正確な位置決めのために、ダイヤモンド中の空間局在NV中心を生成する代替アプローチとしてfsレーザー照射が提案されている。
論文 参考訳(メタデータ) (2022-10-14T19:32:37Z) - Fast scanning nitrogen-vacancy magnetometry by spectrum demodulation [0.0]
本研究では, 窒素空孔中心磁化計におけるデータ取得速度を高速化するスペクトル復調法を実証する。
本手法は,光発光信号の位相同期検出と高速広帯域周波数スイープによる電子スピン共鳴の周期励起に依存する。
論文 参考訳(メタデータ) (2022-05-13T12:07:06Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
ダイヤモンドの固体欠陥は、高い感度と時間分解能を持つ有望な量子センサーを作る。
不均質な拡張と駆動振幅の変動は、使用したセンシング方式によって感度に異なる影響を及ぼした。
連続波(CW)光磁気共鳴(ODMR)分光法, πパルスODMR法, ラムゼー干渉法に基づくスキームの予測感度を数値解析し, 比較した。
論文 参考訳(メタデータ) (2021-09-27T13:05:23Z) - High speed microcircuit and synthetic biosignal widefield imaging using
nitrogen vacancies in diamond [44.62475518267084]
微視的リソグラフィーパターン回路からの信号をマイクロメートルスケールで画像化する方法を示す。
新しいタイプのロックインアンプカメラを用いて、交流信号とパルス電流信号の空間的回復を1ミリ秒以下で実証する。
最後に,生体神経ネットワークにおける信号の正確な形状を再現した合成信号の回復の原理を実証する。
論文 参考訳(メタデータ) (2021-07-29T16:27:39Z) - Sub-second Temporal Magnetic Field Microscopy Using Quantum Defects in
Diamond [10.499603209896307]
磁気顕微鏡は、ダイヤモンド中の窒素空隙(NV)欠陥中心の光学的に検出された磁気共鳴スペクトルの変化を観測することによって実現されている。
これらの広視野ダイヤモンドNV磁力計は、単一の磁場像を得るのに数分から数分の取得を必要とする。
ここでは、NVフォトルミネッセンスをロックイン検出することで、磁場撮像フレーム率を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2021-07-26T14:22:02Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
分子空洞光力学を用いて、サブマイクロワット連続波信号の$sim$32THzでのアップコンバージョンを、周囲条件下で可視領域に示す。
この装置は、少数の分子を収容するプラズモンナノキャビティで構成されている。入射場は、集合分子振動を共鳴的に駆動し、可視ポンプレーザーに光力学的変調を印加する。
論文 参考訳(メタデータ) (2021-07-07T06:23:14Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
ダイヤモンド中の窒素空孔(NV)中心は、近年、量子センシングにかなりの関心を集めている。
最適密度のNV中心を持つダイヤモンドを用いて,pT/sqrt(Hz)レベルの磁場に対する理論的感度を示す。
論文 参考訳(メタデータ) (2021-01-22T18:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。