Recommendation Unlearning via Influence Function
- URL: http://arxiv.org/abs/2307.02147v4
- Date: Thu, 31 Oct 2024 02:54:38 GMT
- Title: Recommendation Unlearning via Influence Function
- Authors: Yang Zhang, Zhiyu Hu, Yimeng Bai, Jiancan Wu, Qifan Wang, Fuli Feng,
- Abstract summary: We propose a new Influence Function-based Recommendation Unlearning (IFRU) framework, which efficiently updates the model without retraining.
IFRU achieves more than 250 times acceleration compared to retraining-based methods with recommendation performance comparable to full retraining.
- Score: 42.4931807753579
- License:
- Abstract: Recommendation unlearning is an emerging task to serve users for erasing unusable data (e.g., some historical behaviors) from a well-trained recommender model. Existing methods process unlearning requests by fully or partially retraining the model after removing the unusable data. However, these methods are impractical due to the high computation cost of full retraining and the highly possible performance damage of partial training. In this light, a desired recommendation unlearning method should obtain a similar model as full retraining in a more efficient manner, i.e., achieving complete, efficient and harmless unlearning. In this work, we propose a new Influence Function-based Recommendation Unlearning (IFRU) framework, which efficiently updates the model without retraining by estimating the influence of the unusable data on the model via the influence function. In the light that recent recommender models use historical data for both the constructions of the optimization loss and the computational graph (e.g., neighborhood aggregation), IFRU jointly estimates the direct influence of unusable data on optimization loss and the spillover influence on the computational graph to pursue complete unlearning. Furthermore, we propose an importance-based pruning algorithm to reduce the cost of the influence function. IFRU is harmless and applicable to mainstream differentiable models. Extensive experiments demonstrate that IFRU achieves more than 250 times acceleration compared to retraining-based methods with recommendation performance comparable to full retraining. Codes are avaiable at https://github.com/baiyimeng/IFRU.
Related papers
- A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift.
Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data.
We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness.
arXiv Detail & Related papers (2024-11-23T17:35:23Z) - Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
We propose a novel and efficient machine unlearning method on pre-trained models.
We leverage LoRA to decompose the model's intermediate features into pre-trained features and residual features.
The method aims to learn the zero residuals on the retained set and shifted residuals on the unlearning set.
arXiv Detail & Related papers (2024-11-13T08:56:35Z) - Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws [59.03420759554073]
We introduce Adaptive Data Optimization (ADO), an algorithm that optimize data distributions in an online fashion, concurrent with model training.
ADO does not require external knowledge, proxy models, or modifications to the model update.
ADO uses per-domain scaling laws to estimate the learning potential of each domain during training and adjusts the data mixture accordingly.
arXiv Detail & Related papers (2024-10-15T17:47:44Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning [28.059563581973432]
Large Language Models (LLMs) often have sensitive, private, or copyrighted data during pre-training.
LLMs unlearning aims to eliminate the influence of undesirable data from the pre-trained model.
We propose Negative Preference Optimization (NPO) as a simple alignment-inspired method that could efficiently unlearn a target dataset.
arXiv Detail & Related papers (2024-04-08T21:05:42Z) - $\nabla τ$: Gradient-based and Task-Agnostic machine Unlearning [7.04736023670375]
We introduce Gradient-based and Task-Agnostic machine Unlearning ($nabla tau$)
$nabla tau$ applies adaptive gradient ascent to the data to be forgotten while using standard gradient descent for the remaining data.
We evaluate our framework's effectiveness using a set of well-established Membership Inference Attack metrics.
arXiv Detail & Related papers (2024-03-21T12:11:26Z) - Unlearning Traces the Influential Training Data of Language Models [31.33791825286853]
This paper presents UnTrac: unlearning traces the influence of a training dataset on the model's performance.
We propose a more scalable approach, UnTrac-Inv, which unlearns a test dataset and evaluates the unlearned model on training datasets.
arXiv Detail & Related papers (2024-01-26T23:17:31Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.