論文の概要: Set Learning for Accurate and Calibrated Models
- arxiv url: http://arxiv.org/abs/2307.02245v2
- Date: Mon, 10 Jul 2023 10:58:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 17:46:03.198055
- Title: Set Learning for Accurate and Calibrated Models
- Title(参考訳): 正確な校正モデルのための集合学習
- Authors: Lukas Muttenthaler and Robert A. Vandermeulen and Qiuyi Zhang and
Thomas Unterthiner and Klaus-Robert M\"uller
- Abstract要約: Odd-$k$-out Learning (OKO) は単一の例ではなく集合のクロスエントロピー誤差を最小化する。
OKOは、特に限られたトレーニングデータとクラス不均衡なレシエーションにおいて、精度とキャリブレーションの両方を向上する。
- 参考スコア(独自算出の注目度): 16.237840080260177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model overconfidence and poor calibration are common in machine learning and
difficult to account for when applying standard empirical risk minimization. In
this work, we propose a novel method to alleviate these problems that we call
odd-$k$-out learning (OKO), which minimizes the cross-entropy error for sets
rather than for single examples. This naturally allows the model to capture
correlations across data examples and achieves both better accuracy and
calibration, especially in limited training data and class-imbalanced regimes.
Perhaps surprisingly, OKO often yields better calibration even when training
with hard labels and dropping any additional calibration parameter tuning, such
as temperature scaling. We provide theoretical justification, establishing that
OKO naturally yields better calibration, and provide extensive experimental
analyses that corroborate our theoretical findings. We emphasize that OKO is a
general framework that can be easily adapted to many settings and the trained
model can be applied to single examples at inference time, without introducing
significant run-time overhead or architecture changes.
- Abstract(参考訳): モデル過信と不適切なキャリブレーションは機械学習では一般的であり、標準的な経験的リスク最小化を適用する場合の考慮が難しい。
そこで本研究では,単一例ではなく集合に対するクロスエントロピー誤差を最小限に抑える,奇数k$out Learning(OKO)と呼ばれる,これらの問題を緩和する新しい手法を提案する。
これにより、モデルがデータサンプル間の相関をキャプチャし、特に限られたトレーニングデータとクラス不均衡なレシエーションにおいて、精度とキャリブレーションの両方を向上することができる。
おそらく、OKOは硬いラベルでトレーニングしたり、温度スケーリングのような追加のキャリブレーションパラメータチューニングを落としたりしても、キャリブレーションが良くなる。
理論的な正当性を提供し、オコが自然により良い校正をもたらすことを立証し、理論的な知見を裏付ける広範な実験分析を行う。
OKOは、多くの設定に簡単に適応できる一般的なフレームワークであり、トレーニングされたモデルは、実行時のオーバーヘッドやアーキテクチャの変更を伴わずに、推論時に単一の例に適用できる。
関連論文リスト
- Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
eRror-Injected Self-Editing (RISE) と呼ばれる新しい好み学習フレームワークを提案する。
RISEは定義済みの微妙な誤りを正しい解の部分的なトークンに注入し、エラー軽減のためにハードペアを構築する。
RISEの有効性を検証する実験では、Qwen2-7B-Instructでは、GSM8Kでは3.0%、MATHでは7.9%が顕著に改善された。
論文 参考訳(メタデータ) (2024-10-09T07:43:38Z) - Reassessing How to Compare and Improve the Calibration of Machine Learning Models [7.183341902583164]
結果の予測確率がモデル予測に基づいてその結果の観測周波数と一致した場合、機械学習モデルを校正する。
キャリブレーションと予測の指標が追加の一般化の指標を伴わない限り、最先端のように見えるような簡単な再校正手法が存在することを示す。
論文 参考訳(メタデータ) (2024-06-06T13:33:45Z) - On the Limitations of Temperature Scaling for Distributions with
Overlaps [8.486166869140929]
一般的な分布集合に対する経験的リスク最小化器の場合, 温度スケーリング性能は, クラス間の重なり合いによって低下することを示す。
そこで本研究では,Mixupデータ拡張手法によって引き起こされる経験的リスクの修正形式を最適化することで,キャリブレーション性能が良好であることが実証された。
論文 参考訳(メタデータ) (2023-06-01T14:35:28Z) - Enabling Calibration In The Zero-Shot Inference of Large Vision-Language
Models [58.720142291102135]
プロンプト、データセット、アーキテクチャといった関連する変数のキャリブレーションを測定し、CLIPによるゼロショット推論が誤校正されていることを見つけます。
学習した1つの温度は、推論データセットにまたがって特定のCLIPモデルごとに一般化され、選択が促される。
論文 参考訳(メタデータ) (2023-03-11T17:14:04Z) - Variable-Based Calibration for Machine Learning Classifiers [11.9995808096481]
モデルのキャリブレーション特性を特徴付けるために,変数ベースのキャリブレーションの概念を導入する。
ほぼ完全なキャリブレーション誤差を持つモデルでは,データの特徴の関数としてかなりの誤校正が期待できることがわかった。
論文 参考訳(メタデータ) (2022-09-30T00:49:31Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
ディープアンサンブルが必ずしもキャリブレーション特性の改善につながるとは限らないことを示す。
そこで本研究では,混成正規化などの現代的な手法と併用して標準アンサンブル法を用いることで,キャリブレーションの少ないモデルが得られることを示す。
このテキストは、データが不足しているときにディープラーニングを活用するために、最も単純で一般的な3つのアプローチの相互作用を調べる。
論文 参考訳(メタデータ) (2020-07-17T07:32:24Z) - Quantile Regularization: Towards Implicit Calibration of Regression
Models [30.872605139672086]
2つのCDF間の累積KL分散として定義される新しい量子正規化器に基づく回帰モデルの校正法を提案する。
提案手法は,Dropout VI や Deep Ensembles といった手法を用いて学習した回帰モデルのキャリブレーションを大幅に改善することを示す。
論文 参考訳(メタデータ) (2020-02-28T16:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。