Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need
- URL: http://arxiv.org/abs/2307.02249v2
- Date: Sat, 11 May 2024 14:24:23 GMT
- Title: Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need
- Authors: Linhao Qu, Yingfan Ma, Xiaoyuan Luo, Manning Wang, Zhijian Song,
- Abstract summary: We propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting.
We also propose an accurate pseudo label generation method through prototype learning.
- Score: 18.832471712088353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag, and the patches cut out of it are treated as instances. Existing methods either train an instance classifier through pseudo-labeling or aggregate instance features into a bag feature through attention mechanisms and then train a bag classifier, where the attention scores can be used for instance-level classification. However, the pseudo instance labels constructed by the former usually contain a lot of noise, and the attention scores constructed by the latter are not accurate enough, both of which affect their performance. In this paper, we propose an instance-level MIL framework based on contrastive learning and prototype learning to effectively accomplish both instance classification and bag classification tasks. To this end, we propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting to effectively learn instance feature representation. We also propose an accurate pseudo label generation method through prototype learning. We then develop a joint training strategy for weakly supervised contrastive learning, prototype learning, and instance classifier training. Extensive experiments and visualizations on four datasets demonstrate the powerful performance of our method. Codes are available at https://github.com/miccaiif/INS.
Related papers
- Rethinking Multiple Instance Learning: Developing an Instance-Level Classifier via Weakly-Supervised Self-Training [14.16923025335549]
Multiple instance learning (MIL) problem is currently solved from either bag-classification or instance-classification perspective.
We formulate MIL as a semi-supervised instance classification problem, so that all the labeled and unlabeled instances can be fully utilized.
We propose a weakly-supervised self-training method, in which we utilize the positive bag labels to construct a global constraint.
arXiv Detail & Related papers (2024-08-09T01:53:41Z) - Rethinking Multiple Instance Learning for Whole Slide Image
Classification: A Bag-Level Classifier is a Good Instance-Level Teacher [22.080213609228547]
Multiple Instance Learning has demonstrated promise in Whole Slide Image (WSI) classification.
Existing methods generally adopt a two-stage approach, comprising a non-learnable feature embedding stage and a classifier training stage.
We propose that a bag-level classifier can be a good instance-level teacher.
arXiv Detail & Related papers (2023-12-02T10:16:03Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification.
We propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm.
In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.
arXiv Detail & Related papers (2023-11-26T07:39:00Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3D semantic scene understanding tasks have achieved great success with the emergence of deep learning, but often require a huge amount of manually annotated training data.
We propose the first weakly-supervised 3D instance segmentation method that only requires categorical semantic labels as supervision.
By generating pseudo instance labels from categorical semantic labels, our designed approach can also assist existing methods for learning 3D instance segmentation at reduced annotation cost.
arXiv Detail & Related papers (2023-08-03T12:30:52Z) - Multiple Instance Learning via Iterative Self-Paced Supervised
Contrastive Learning [22.07044031105496]
Learning representations for individual instances when only bag-level labels are available is a challenge in multiple instance learning (MIL)
We propose a novel framework, Iterative Self-paced Supervised Contrastive Learning for MIL Representations (ItS2CLR)
It improves the learned representation by exploiting instance-level pseudo labels derived from the bag-level labels.
arXiv Detail & Related papers (2022-10-17T21:43:32Z) - Bi-directional Weakly Supervised Knowledge Distillation for Whole Slide
Image Classification [9.43604501642743]
We propose an end-to-end weakly supervised knowledge distillation framework (WENO) for WSI classification.
In this paper, we propose an end-to-end weakly supervised knowledge distillation framework (WENO) for WSI classification.
arXiv Detail & Related papers (2022-10-07T16:12:04Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Train a One-Million-Way Instance Classifier for Unsupervised Visual
Representation Learning [45.510042484456854]
This paper presents a simple unsupervised visual representation learning method with a pretext task of discriminating all images in a dataset using a parametric, instance-level computation.
The overall framework is a replica of a supervised classification model, where semantic classes (e.g., dog, bird, and ship) are replaced by instance IDs.
scaling up the classification task from thousands of semantic labels to millions of instance labels brings specific challenges including 1) the large-scale softmax classifier; 2) the slow convergence due to the infrequent visiting of instance samples; and 3) the massive number of negative classes that can be noisy.
arXiv Detail & Related papers (2021-02-09T14:44:18Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.