First-Explore, then Exploit: Meta-Learning to Solve Hard Exploration-Exploitation Trade-Offs
- URL: http://arxiv.org/abs/2307.02276v2
- Date: Mon, 04 Nov 2024 23:33:38 GMT
- Title: First-Explore, then Exploit: Meta-Learning to Solve Hard Exploration-Exploitation Trade-Offs
- Authors: Ben Norman, Jeff Clune,
- Abstract summary: First-Explore represents a significant step towards developing meta-RL algorithms capable of human-like exploration on a broader range of domains.
Our method, First-Explore, overcomes the limitation by learning two policies: one to solely explore, and one to solely exploit.
- Score: 2.0690113422225997
- License:
- Abstract: Standard reinforcement learning (RL) agents never intelligently explore like a human (i.e. taking into account complex domain priors and adapting quickly based on previous exploration). Across episodes, RL agents struggle to perform even simple exploration strategies, for example systematic search that avoids exploring the same location multiple times. This poor exploration limits performance on challenging domains. Meta-RL is a potential solution, as unlike standard RL, meta-RL can learn to explore, and potentially learn highly complex strategies far beyond those of standard RL, strategies such as experimenting in early episodes to learn new skills, or conducting experiments to learn about the current environment. Traditional meta-RL focuses on the problem of learning to optimally balance exploration and exploitation to maximize the cumulative reward of the episode sequence (e.g., aiming to maximize the total wins in a tournament -- while also improving as a player). We identify a new challenge with state-of-the-art cumulative-reward meta-RL methods. When optimal behavior requires exploration that sacrifices immediate reward to enable higher subsequent reward, existing state-of-the-art cumulative-reward meta-RL methods become stuck on the local optimum of failing to explore. Our method, First-Explore, overcomes this limitation by learning two policies: one to solely explore, and one to solely exploit. When exploring requires forgoing early-episode reward, First-Explore significantly outperforms existing cumulative meta-RL methods. By identifying and solving the previously unrecognized problem of forgoing reward in early episodes, First-Explore represents a significant step towards developing meta-RL algorithms capable of human-like exploration on a broader range of domains.
Related papers
- First Go, then Post-Explore: the Benefits of Post-Exploration in
Intrinsic Motivation [7.021281655855703]
Go-Explore achieved breakthrough performance on challenging reinforcement learning (RL) tasks with sparse rewards.
Key insight of Go-Explore was that successful exploration requires an agent to first return to an interesting state.
We refer to such exploration after a goal is reached as 'post-exploration'
arXiv Detail & Related papers (2022-12-06T18:56:47Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL [91.26538493552817]
We present a formulation of hindsight relabeling for meta-RL, which relabels experience during meta-training to enable learning to learn entirely using sparse reward.
We demonstrate the effectiveness of our approach on a suite of challenging sparse reward goal-reaching environments.
arXiv Detail & Related papers (2021-12-02T00:51:17Z) - Long-Term Exploration in Persistent MDPs [68.8204255655161]
We propose an exploration method called Rollback-Explore (RbExplore)
In this paper, we propose an exploration method called Rollback-Explore (RbExplore), which utilizes the concept of the persistent Markov decision process.
We test our algorithm in the hard-exploration Prince of Persia game, without rewards and domain knowledge.
arXiv Detail & Related papers (2021-09-21T13:47:04Z) - Exploration in Deep Reinforcement Learning: A Comprehensive Survey [24.252352133705735]
Deep Reinforcement Learning (DRL) and Deep Multi-agent Reinforcement Learning (MARL) have achieved significant success across a wide range of domains, such as game AI, autonomous vehicles, robotics and finance.
DRL and deep MARL agents are widely known to be sample-inefficient and millions of interactions are usually needed even for relatively simple game settings.
This paper provides a comprehensive survey on existing exploration methods in DRL and deep MARL.
arXiv Detail & Related papers (2021-09-14T13:16:33Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Decoupling Exploration and Exploitation for Meta-Reinforcement Learning
without Sacrifices [132.49849640628727]
meta-reinforcement learning (meta-RL) builds agents that can quickly learn new tasks by leveraging prior experience on related tasks.
In principle, optimal exploration and exploitation can be learned end-to-end by simply maximizing task performance.
We present DREAM, which avoids local optima in end-to-end training, without sacrificing optimal exploration.
arXiv Detail & Related papers (2020-08-06T17:57:36Z) - MetaCURE: Meta Reinforcement Learning with Empowerment-Driven
Exploration [52.48362697163477]
Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on sparse-reward tasks.
We model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning.
We develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies.
arXiv Detail & Related papers (2020-06-15T06:56:18Z) - Intrinsic Exploration as Multi-Objective RL [29.124322674133]
Intrinsic motivation enables reinforcement learning (RL) agents to explore when rewards are very sparse.
We propose a framework based on multi-objective RL where both exploration and exploitation are being optimized as separate objectives.
This formulation brings the balance between exploration and exploitation at a policy level, resulting in advantages over traditional methods.
arXiv Detail & Related papers (2020-04-06T02:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.