論文の概要: Multi-Scale Prototypical Transformer for Whole Slide Image
Classification
- arxiv url: http://arxiv.org/abs/2307.02308v1
- Date: Wed, 5 Jul 2023 14:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 13:24:19.661499
- Title: Multi-Scale Prototypical Transformer for Whole Slide Image
Classification
- Title(参考訳): 全スライド画像分類のためのマルチスケールプロトタイプ変換器
- Authors: Saisai Ding, Jun Wang, Juncheng Li, and Jun Shi
- Abstract要約: 全スライド画像(WSI)分類は、計算病理学において重要な課題である。
本稿では,WSI分類のための新しいマルチスケールプロトタイプトランス (MSPT) を提案する。
- 参考スコア(独自算出の注目度): 12.584411225450989
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Whole slide image (WSI) classification is an essential task in computational
pathology. Despite the recent advances in multiple instance learning (MIL) for
WSI classification, accurate classification of WSIs remains challenging due to
the extreme imbalance between the positive and negative instances in bags, and
the complicated pre-processing to fuse multi-scale information of WSI. To this
end, we propose a novel multi-scale prototypical Transformer (MSPT) for WSI
classification, which includes a prototypical Transformer (PT) module and a
multi-scale feature fusion module (MFFM). The PT is developed to reduce
redundant instances in bags by integrating prototypical learning into the
Transformer architecture. It substitutes all instances with cluster prototypes,
which are then re-calibrated through the self-attention mechanism of the
Trans-former. Thereafter, an MFFM is proposed to fuse the clustered prototypes
of different scales, which employs MLP-Mixer to enhance the information
communication between prototypes. The experimental results on two public WSI
datasets demonstrate that the proposed MSPT outperforms all the compared
algorithms, suggesting its potential applications.
- Abstract(参考訳): 全スライド画像(WSI)分類は、計算病理学において重要な課題である。
WSI分類における多重インスタンス学習(MIL)の最近の進歩にもかかわらず、バッグの正と負のインスタンス間の極端の不均衡と、WSIのマルチスケール情報を融合する複雑な前処理により、WSIの正確な分類は依然として困難である。
そこで本研究では,wsi 分類のための多種多型変圧器 (mspt) を提案し,多種多機能融合モジュール (mffm) と多種多型変圧器 (pt) モジュールを含む。
PTは、トランスフォーマーアーキテクチャにプロトタイプ学習を統合することで、バッグの冗長なインスタンスを減らすために開発された。
すべてのインスタンスをクラスタプロトタイプで置き換えて,Trans-formerの自己保持機構を通じて再校正する。
その後、MFFMは、MLP-Mixerを用いてプロトタイプ間の情報通信を強化するため、異なるスケールのクラスタ化されたプロトタイプを融合するために提案される。
2つの公開WSIデータセットの実験結果は、提案したMSPTが比較アルゴリズムを全て上回っていることを示す。
関連論文リスト
- UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
統一型異常検出(MINT-AD)のためのマルチクラスインプリシトニューラル表現変換器を提案する。
マルチクラス分布を学習することにより、モデルが変換器デコーダのクラス対応クエリ埋め込みを生成する。
MINT-ADは、カテゴリと位置情報を特徴埋め込み空間に投影することができ、さらに分類と事前確率損失関数によって監督される。
論文 参考訳(メタデータ) (2024-03-21T08:08:31Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation [59.91357714415056]
コンテクスト共有変換器(CST)とセマンティックガザリング散乱変換器(SGST)の2つの変種を提案する。
CSTは、軽量な計算により、画像フレーム内のグローバル共有コンテキスト情報を学習し、SGSTは、前景と背景のセマンティック相関を別々にモデル化する。
多段核融合にバニラ変換器を使用するベースラインと比較して,我々は13倍の速度向上を実現し,新しい最先端ZVOS性能を実現する。
論文 参考訳(メタデータ) (2023-08-13T06:12:00Z) - TPMIL: Trainable Prototype Enhanced Multiple Instance Learning for Whole
Slide Image Classification [13.195971707693365]
我々は、弱い教師付きWSI分類のための訓練可能なプロトタイプ強化深層MILフレームワークを開発した。
本手法により, 異なる腫瘍のサブタイプ間の相関関係を明らかにすることができる。
提案手法を2つのWSIデータセット上でテストし,新たなSOTAを実現する。
論文 参考訳(メタデータ) (2023-05-01T07:39:19Z) - Diagnose Like a Pathologist: Transformer-Enabled Hierarchical
Attention-Guided Multiple Instance Learning for Whole Slide Image
Classification [39.41442041007595]
複数のインスタンス学習とトランスフォーマーは、病理組織学的にWSI(Whole Slide Image)分類でますます人気がある。
本稿では,WSI を完全に活用するための階層型注意誘導型多重インスタンス学習フレームワークを提案する。
このフレームワーク内では、インテグレート・アテンション・トランスが提案され、トランスの性能をさらに向上する。
論文 参考訳(メタデータ) (2023-01-19T15:38:43Z) - Language models are good pathologists: using attention-based sequence
reduction and text-pretrained transformers for efficient WSI classification [0.21756081703275998]
全体スライド画像(WSI)解析は通常、多重インスタンス学習(MIL)問題として定式化される。
textitSeqShortは、各WSIを固定サイズと短サイズのインスタンスのシーケンスで要約するシーケンス短縮レイヤである。
本稿では,大容量のテキストデータに対して,下流トランスフォーマーアーキテクチャの事前訓練を行った場合,WSI分類性能が向上することを示す。
論文 参考訳(メタデータ) (2022-11-14T14:11:31Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z) - Multimodal Fusion Transformer for Remote Sensing Image Classification [35.57881383390397]
視覚変換器(ViT)は、畳み込みニューラルネットワーク(CNN)と比較して、期待できる性能のため、画像分類タスクにおいてトレンドとなっている。
CNNに近い満足なパフォーマンスを達成するために、トランスフォーマーはより少ないパラメータを必要とする。
HSI土地被覆分類のためのマルチヘッドクロスパッチアテンション(mCrossPA)を含む新しいマルチモーダルフュージョントランス (MFT) ネットワークを導入する。
論文 参考訳(メタデータ) (2022-03-31T11:18:41Z) - Point Cloud Learning with Transformer [2.3204178451683264]
我々は,マルチレベルマルチスケールポイントトランスフォーマ(mlmspt)と呼ばれる新しいフレームワークを提案する。
具体的には、点ピラミッド変換器を用いて、多様な分解能やスケールを持つ特徴をモデル化する。
マルチレベルトランスモジュールは、各スケールの異なるレベルからコンテキスト情報を集約し、それらの相互作用を強化するように設計されている。
論文 参考訳(メタデータ) (2021-04-28T08:39:21Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixupは、入力例と対応するラベルを線形に補間する最新のデータ拡張技術である。
本稿では,自然言語処理タスクにmixupを適用する方法について検討する。
我々は、様々なNLPタスクに対して、mixup-transformerと呼ばれる、トランスフォーマーベースの事前学習アーキテクチャにmixupを組み込んだ。
論文 参考訳(メタデータ) (2020-10-05T23:37:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。