論文の概要: Formally Verifying a Real World Smart Contract
- arxiv url: http://arxiv.org/abs/2307.02325v1
- Date: Wed, 5 Jul 2023 14:30:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 18:14:02.778617
- Title: Formally Verifying a Real World Smart Contract
- Title(参考訳): 現実のスマートコントラクトを正式に検証する
- Authors: Alexandre Mota, Fei Yang, Cristiano Teixeira
- Abstract要約: われわれは、Solidityの最新バージョンで書かれた現実世界のスマートコントラクトを正式に検証できるツールを検索する。
本稿では,最近のSolidityで書かれた実世界のスマートコントラクトを正式に検証できるツールについて紹介する。
- 参考スコア(独自算出の注目度): 52.30656867727018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, smart contracts have become increasingly popular and, as with
software development in general, testing is the standard method for verifying
their correctness. However, smart contracts require a higher level of certainty
regarding correctness because they are diffcult to modify once deployed and
errors can result in significant financial losses. Therefore, formal
verification is essential. In this article, we present our search for a tool
capable of formally verifying a real-world smart contract written in a recent
version of Solidity.
- Abstract(参考訳): 今日、スマートコントラクトはますます普及し、ソフトウェア開発全般と同様に、テストが正しいことを検証する標準的な方法になっている。
しかし、スマートコントラクトは、一度デプロイされると変更が困難になり、エラーが重大な財政的損失をもたらすため、正確性に関する高い確実性を必要とする。
したがって、正式な検証は不可欠である。
本稿では,最近のsolidityで記述された実世界のスマートコントラクトを正式に検証できるツールの探索について述べる。
関連論文リスト
- Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
本稿では、バージョン管理されたスマートコントラクトのデータセットを収集する最初のスマートコントラクト収集ツールであるEthstractorを提案する。
収集されたデータセットは、スマートコントラクトの脆弱性の指標として、コードメトリクスの信頼性を評価するために使用される。
論文 参考訳(メタデータ) (2024-07-22T18:27:29Z) - Solvent: liquidity verification of smart contracts [2.680854115314008]
スマートコントラクト検証ツールの現在の制限は、暗号資産の交換に関する流動性特性の表現と検証に効果がないことである。
我々は,これらの特性の検証を目的とした溶剤について提案する。これは,Solidityの既存の検証ツールの範囲を超えている。
論文 参考訳(メタデータ) (2024-04-27T10:54:50Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
本稿では,開発者がセキュアなスマート技術を開発するのを支援することを目的とした,文献レビューと実験報告を組み合わせる。
頻繁な脆弱性とそれに対応する緩和ソリューションのリストを提供する。
サンプルのスマートコントラクト上でそれらを実行し、テストすることで、コミュニティが最も広く使用しているツールを評価します。
論文 参考訳(メタデータ) (2024-03-28T19:36:53Z) - CONTRACTFIX: A Framework for Automatically Fixing Vulnerabilities in
Smart Contracts [12.68736241704817]
ContractFixは、脆弱なスマートコントラクトのためのセキュリティパッチを自動的に生成するフレームワークである。
ユーザーは、自動的にパッチを適用し、パッチされたコントラクトを検証するセキュリティ修正ツールとして使用することができる。
論文 参考訳(メタデータ) (2023-07-18T01:14:31Z) - Vera: A General-Purpose Plausibility Estimation Model for Commonsense
Statements [135.09277663808322]
本稿では,コモンセンス知識に基づく宣言文の妥当性を推定する汎用モデルであるVeraを紹介する。
19のQAデータセットと2つの大規模ナレッジベースから生成された7Mのコモンセンスステートメントに基づいてトレーニングされた。
Vera は LM 生成したコモンセンス知識のフィルタリングに優れており,ChatGPT などのモデルが生成する誤ったコモンセンス文を実環境で検出するのに有用である。
論文 参考訳(メタデータ) (2023-05-05T17:15:32Z) - Lessons from Formally Verified Deployed Software Systems (Extended version) [65.69802414600832]
本稿は、正式に認証されたシステムを作成し、実際に使用するためにデプロイした各種のアプリケーション分野のプロジェクトについて検討する。
使用する技術、適用の形式、得られた結果、そしてソフトウェア産業が形式的な検証技術やツールの恩恵を受ける能力について示すべき教訓を考察する。
論文 参考訳(メタデータ) (2023-01-05T18:18:46Z) - Safety Verification of Declarative Smart Contracts [4.303272418564008]
本稿では,DeCon で記述された宣言型スマートコントラクトを対象とした自動安全検証ツール DCV を提案する。
20のベンチマークコントラクトに対する評価は,DCVがパブリックリポジトリから適応したスマートコントラクトの検証に有効であることを示し,他のツールがサポートしていないコントラクトの検証が可能であることを示唆している。
論文 参考訳(メタデータ) (2022-11-26T15:02:37Z) - Editing Factual Knowledge in Language Models [51.947280241185]
本稿では,この知識を編集する手法であるKnowledgeEditorを提案する。
knowledgeeditorは計算効率が高いだけでなく、lm事前トレーニングの修正も必要としない。
2つの一般的なアーキテクチャと知識集約型タスクで、KnowledgeEditorの有効性を示します。
論文 参考訳(メタデータ) (2021-04-16T15:24:42Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。