論文の概要: Machine learning at the mesoscale: a computation-dissipation bottleneck
- arxiv url: http://arxiv.org/abs/2307.02379v1
- Date: Wed, 5 Jul 2023 15:46:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 13:05:21.607851
- Title: Machine learning at the mesoscale: a computation-dissipation bottleneck
- Title(参考訳): メソスケールにおける機械学習: 計算散逸ボトルネック
- Authors: Alessandro Ingrosso and Emanuele Panizon
- Abstract要約: 入力出力デバイスとして使用されるメソスコピックシステムにおける計算散逸ボトルネックについて検討する。
我々のフレームワークは、情報圧縮、入出力計算、非相互相互作用によって引き起こされる動的不可逆性の間の決定的な妥協に光を当てている。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The cost of information processing in physical systems calls for a trade-off
between performance and energetic expenditure. Here we formulate and study a
computation-dissipation bottleneck in mesoscopic systems used as input-output
devices. Using both real datasets and synthetic tasks, we show how
non-equilibrium leads to enhanced performance. Our framework sheds light on a
crucial compromise between information compression, input-output computation
and dynamic irreversibility induced by non-reciprocal interactions.
- Abstract(参考訳): 物理システムにおける情報処理のコストは、パフォーマンスとエネルギー消費のトレードオフを要求する。
本稿では,入力出力デバイスとして用いられるメソスコピックシステムにおける計算散逸ボトルネックを定式化し,検討する。
実際のデータセットと合成タスクの両方を用いて、非平衡がパフォーマンスの向上につながることを示す。
提案手法は,情報圧縮,入出力計算,非相互相互作用によって引き起こされる動的非可逆性との間の重要な妥協点を浮き彫りにする。
関連論文リスト
- Heterogeneous quantization regularizes spiking neural network activity [0.0]
本稿では、アナログデータを正規化し、スパイク位相表現に量子化する、データブラインドニューロモルフィック信号条件付け戦略を提案する。
我々は、量子化重みの範囲と密度が蓄積された入力統計に適応するデータ認識キャリブレーションステップを追加することで、このメカニズムを拡張した。
論文 参考訳(メタデータ) (2024-09-27T02:25:44Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Representation Learning for Wearable-Based Applications in the Case of
Missing Data [20.37256375888501]
実環境におけるマルチモーダルセンサデータは、データ品質が低く、データアノテーションが限られているため、依然として困難である。
本稿では,不足するウェアラブルデータに対する表現学習について検討し,最新統計手法と比較する。
本研究は,マスキングに基づく自己指導型学習タスクの設計と開発に関する知見を提供する。
論文 参考訳(メタデータ) (2024-01-08T08:21:37Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Robust Representation Learning via Perceptual Similarity Metrics [18.842322467828502]
Contrastive Input Morphing (CIM) はデータの入力空間変換を学習する表現学習フレームワークである。
CIMは他の相互情報に基づく表現学習技術と相補的であることを示す。
論文 参考訳(メタデータ) (2021-06-11T21:45:44Z) - Scalable Optical Learning Operator [0.2399911126932526]
提案するフレームワークは,速度を分類することなく既存のシステムのエネルギースケーリング問題を克服する。
数値的および実験的に、デジタル実装に匹敵する精度で複数の異なるタスクを実行する方法の能力を示した。
その結果、マルチモードファイバベースのコンピュータの性能を複製するには、強力なスーパーコンピュータが必要であることが示された。
論文 参考訳(メタデータ) (2020-12-22T23:06:59Z) - Computation harvesting in road traffic dynamics [0.0]
本稿では,人間の脳などの自然計算システムに追従する計算モデルを提案する。
特に,リッチセンサから収集したIoTデータを用いた「計算収穫」の概念に基づく手法を提案する。
そこで本研究では,実際の道路交通を用いたデータ計算による予測タスクを行い,収穫の可能性を示す。
論文 参考訳(メタデータ) (2020-11-21T08:22:19Z) - Focus of Attention Improves Information Transfer in Visual Features [80.22965663534556]
本稿では,真のオンライン環境下での視覚情報伝達のための教師なし学習に焦点を当てた。
エントロピー項の計算は、エントロピー項のオンライン推定を行う時間的プロセスによって行われる。
入力確率分布をよりよく構成するために,人間のような注目モデルを用いる。
論文 参考訳(メタデータ) (2020-06-16T15:07:25Z) - Optimal Learning with Excitatory and Inhibitory synapses [91.3755431537592]
相関関係の存在下でアナログ信号間の関連性を保持するという課題について検討する。
ランダムな入力および出力プロセスのパワースペクトルの観点から、典型的な学習性能を特徴付ける。
論文 参考訳(メタデータ) (2020-05-25T18:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。