論文の概要: DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models
- arxiv url: http://arxiv.org/abs/2307.02421v2
- Date: Mon, 20 Nov 2023 09:08:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 19:01:36.899457
- Title: DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models
- Title(参考訳): DragonDiffusion:拡散モデルによるドラッグスタイルの操作の実現
- Authors: Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, Jian Zhang
- Abstract要約: 本研究では,DiffusionモデルにおけるDragスタイルの操作を可能にする新しい画像編集手法DragonDiffusionを提案する。
提案手法は,オブジェクト移動,オブジェクトのリサイズ,オブジェクトの外観置換,コンテンツドラッグングなど,生成された画像や実際の画像に対する様々な編集モードを実現する。
- 参考スコア(独自算出の注目度): 66.43179841884098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the ability of existing large-scale text-to-image (T2I) models to
generate high-quality images from detailed textual descriptions, they often
lack the ability to precisely edit the generated or real images. In this paper,
we propose a novel image editing method, DragonDiffusion, enabling Drag-style
manipulation on Diffusion models. Specifically, we construct classifier
guidance based on the strong correspondence of intermediate features in the
diffusion model. It can transform the editing signals into gradients via
feature correspondence loss to modify the intermediate representation of the
diffusion model. Based on this guidance strategy, we also build a multi-scale
guidance to consider both semantic and geometric alignment. Moreover, a
cross-branch self-attention is added to maintain the consistency between the
original image and the editing result. Our method, through an efficient design,
achieves various editing modes for the generated or real images, such as object
moving, object resizing, object appearance replacement, and content dragging.
It is worth noting that all editing and content preservation signals come from
the image itself, and the model does not require fine-tuning or additional
modules. Our source code will be available at
https://github.com/MC-E/DragonDiffusion.
- Abstract(参考訳): 既存の大規模テキスト・トゥ・イメージ(T2I)モデルで詳細なテキスト記述から高品質な画像を生成する能力があるにもかかわらず、生成された画像や実際の画像を正確に編集する能力に欠けることが多い。
本稿では,DiffusionモデルにおけるDragスタイルの操作を可能にする新しい画像編集手法DragonDiffusionを提案する。
具体的には,拡散モデルにおける中間特徴の強い対応に基づく分類器のガイダンスを構築する。
編集信号を特徴対応損失によって勾配に変換し、拡散モデルの中間表現を変更することができる。
このガイダンス戦略に基づいて、意味的および幾何学的アライメントの両方を考慮したマルチスケールガイダンスを構築する。
さらに、原画像と編集結果との整合性を維持するために、クロスブランチ自己注意を追加する。
効率的な設計により,オブジェクトの移動,オブジェクトのリサイズ,オブジェクトの外観置換,コンテンツのドラッグなど,生成画像や実画像の様々な編集モードを実現する。
すべての編集およびコンテンツ保存信号は、画像自体から来るものであり、モデルは微調整や追加のモジュールを必要としないことに注意する必要がある。
ソースコードはhttps://github.com/mc-e/dragondiffusionから入手できます。
関連論文リスト
- Enhancing Text-to-Image Editing via Hybrid Mask-Informed Fusion [61.42732844499658]
本稿では拡散モデルに基づくテキスト誘導画像編集手法を体系的に改善する。
我々は、人間のアノテーションを外部知識として組み込んで、Mask-informed'領域内で編集を限定する。
論文 参考訳(メタデータ) (2024-05-24T07:53:59Z) - Editable Image Elements for Controllable Synthesis [79.58148778509769]
拡散モデルを用いて入力画像の空間的編集を促進する画像表現を提案する。
オブジェクトのリサイズ,再配置,ドラッグング,デオクルージョン,除去,変動,画像合成など,画像編集作業における表現の有効性を示す。
論文 参考訳(メタデータ) (2024-04-24T17:59:11Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
大規模テキスト・ツー・イメージ(T2I)拡散モデルは、ここ数年で画像生成に革命をもたらした。
既存の拡散型画像編集における2つの弱点を正すためにDiffEditorを提案する。
本手法は,様々な精細な画像編集タスクにおいて,最先端の性能を効率的に達成することができる。
論文 参考訳(メタデータ) (2024-02-04T18:50:29Z) - InFusion: Inject and Attention Fusion for Multi Concept Zero-Shot
Text-based Video Editing [27.661609140918916]
InFusionはゼロショットテキストベースのビデオ編集のためのフレームワークである。
編集プロンプトで言及されているさまざまな概念に対する画素レベルの制御による複数の概念の編集をサポートする。
私たちのフレームワークは、トレーニングを必要としないため、編集のためのワンショットチューニングモデルの安価な代替品です。
論文 参考訳(メタデータ) (2023-07-22T17:05:47Z) - DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing [94.24479528298252]
DragGANは、ピクセルレベルの精度で印象的な編集結果を実現する、インタラクティブなポイントベースの画像編集フレームワークである。
大規模な事前学習拡散モデルを利用することで、実画像と拡散画像の両方における対話的点ベース編集の適用性を大幅に向上する。
本稿では,対話的点ベース画像編集手法の性能を評価するため,DragBenchというベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-06-26T06:04:09Z) - LayerDiffusion: Layered Controlled Image Editing with Diffusion Models [5.58892860792971]
LayerDiffusionはセマンティックベースの階層制御画像編集手法である。
我々は、大規模テキスト・画像モデルを活用し、階層化された制御最適化戦略を採用する。
実験により,高コヒーレント画像の生成における本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-30T01:26:41Z) - DiffUTE: Universal Text Editing Diffusion Model [32.384236053455]
汎用的な自己教師型テキスト編集拡散モデル(DiffUTE)を提案する。
それは、その現実的な外観を維持しながら、ソースイメージ内の単語を別の単語に置き換えたり、修正したりすることを目的としている。
提案手法は印象的な性能を実現し,高忠実度画像の編集を可能にする。
論文 参考訳(メタデータ) (2023-05-18T09:06:01Z) - PAIR-Diffusion: A Comprehensive Multimodal Object-Level Image Editor [135.17302411419834]
PAIR Diffusionは、画像内の各オブジェクトの構造と外観を制御する拡散モデルを可能にする汎用フレームワークである。
画像中の各オブジェクトのプロパティを制御できることが、包括的な編集機能に繋がることを示す。
我々のフレームワークは、参照画像ベースの外観編集、自由形形状編集、オブジェクトの追加、バリエーションなど、実際の画像に対する様々なオブジェクトレベルの編集操作を可能にする。
論文 参考訳(メタデータ) (2023-03-30T17:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。