Graphical CSS Code Transformation Using ZX Calculus
- URL: http://arxiv.org/abs/2307.02437v2
- Date: Fri, 1 Sep 2023 06:07:27 GMT
- Title: Graphical CSS Code Transformation Using ZX Calculus
- Authors: Jiaxin Huang (Dept. of Computer Science, Hong Kong University of
Science and Technology), Sarah Meng Li (Institute for Quantum Computing,
Dept. of Combinatorics & Optimization, University of Waterloo), Lia Yeh
(Dept. of Computer Science, University of Oxford, Quantinuum), Aleks
Kissinger (Dept. of Computer Science, University of Oxford), Michele Mosca
(Institute for Quantum Computing, Dept. of Combinatorics & Optimization,
University of Waterloo, Perimeter Institute for Theoretical Physics), Michael
Vasmer (Institute for Quantum Computing, University of Waterloo, Perimeter
Institute for Theoretical Physics)
- Abstract summary: We present a generic approach to transform CSS codes by building upon their equivalence to phase-free ZX diagrams.
We show how ZX and graphical encoder maps relate several equivalent perspectives on these code-transforming operations.
- Score: 0.6734802552703861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present a generic approach to transform CSS codes by
building upon their equivalence to phase-free ZX diagrams. Using the ZX
calculus, we demonstrate diagrammatic transformations between encoding maps
associated with different codes. As a motivating example, we give explicit
transformations between the Steane code and the quantum Reed-Muller code, since
by switching between these two codes, one can obtain a fault-tolerant universal
gate set. To this end, we propose a bidirectional rewrite rule to find a (not
necessarily transversal) physical implementation for any logical ZX diagram in
any CSS code.
Then we focus on two code transformation techniques: code morphing, a
procedure that transforms a code while retaining its fault-tolerant gates, and
gauge fixing, where complimentary codes can be obtained from a common subsystem
code (e.g., the Steane and the quantum Reed-Muller codes from the [[15,1,3,3]]
code). We provide explicit graphical derivations for these techniques and show
how ZX and graphical encoder maps relate several equivalent perspectives on
these code-transforming operations.
Related papers
- Targeted Clifford logical gates for hypergraph product codes [61.269295538188636]
We construct explicit targeted logical gates for hypergraph product codes.
As a concrete example, we give logical circuits for the $[[18,2,3]]$ toric code.
arXiv Detail & Related papers (2024-11-26T02:32:44Z) - Equivalence Classes of Quantum Error-Correcting Codes [49.436750507696225]
Quantum error-correcting codes (QECC's) are needed to combat the inherent noise affecting quantum processes.
We represent QECC's in a form called a ZX diagram, consisting of a tensor network.
arXiv Detail & Related papers (2024-06-17T20:48:43Z) - Towards Accurate Image Coding: Improved Autoregressive Image Generation
with Dynamic Vector Quantization [73.52943587514386]
Existing vector quantization (VQ) based autoregressive models follow a two-stage generation paradigm.
We propose a novel two-stage framework: (1) Dynamic-Quantization VAE (DQ-VAE) which encodes image regions into variable-length codes based their information densities for accurate representation.
arXiv Detail & Related papers (2023-05-19T14:56:05Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - CSS code surgery as a universal construction [51.63482609748332]
We define code maps between Calderbank-Shor-Steane (CSS) codes using maps between chain complexes.
We describe code surgery between such codes using a specific colimit in the category of chain complexes.
arXiv Detail & Related papers (2023-01-31T16:17:25Z) - Phase-free ZX diagrams are CSS codes (...or how to graphically grok the
surface code) [0.0]
We show a direct correspondence between phase-free ZX diagrams and Calderbank-Shor-Steane codes.
CSS codes are a family of quantum error correcting codes constructed from classical codes.
We show that we can extend this translation to stabilisers and logical operators of any (possibly non-maximal) CSS code by "bending wires"
arXiv Detail & Related papers (2022-04-29T12:17:51Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Quantum Lego: Building Quantum Error Correction Codes from Tensor
Networks [0.0]
We represent complex code constructions as tensor networks built from the tensors of simple codes or states.
The framework endows a network geometry to any code it builds and is valid for constructing stabilizer codes.
We lay out some examples where we glue together simple stabilizer codes to construct non-trivial codes.
arXiv Detail & Related papers (2021-09-16T18:00:00Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.