Morphing quantum codes
- URL: http://arxiv.org/abs/2112.01446v2
- Date: Tue, 16 Aug 2022 22:17:12 GMT
- Title: Morphing quantum codes
- Authors: Michael Vasmer and Aleksander Kubica
- Abstract summary: We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a morphing procedure that can be used to generate new quantum
codes from existing quantum codes. In particular, we morph the 15-qubit
Reed-Muller code to obtain a $[\![10,1,2]\!]$ code that is the smallest known
stabilizer code with a fault-tolerant logical $T$ gate. In addition, we
construct a family of hybrid color-toric codes by morphing the color code. Our
code family inherits the fault-tolerant gates of the original color code,
implemented via constant-depth local unitaries. As a special case of this
construction, we obtain toric codes with fault-tolerant multi-qubit control-$Z$
gates. We also provide an efficient decoding algorithm for hybrid color-toric
codes in two dimensions, and numerically benchmark its performance for
phase-flip noise. We expect that morphing may also be a useful technique for
modifying other code families such as triorthogonal codes.
Related papers
- Computation with quantum Reed-Muller codes and their mapping onto 2D atom arrays [2.3020018305241328]
We give a fault tolerant construction for error correction and computation using two punctured quantum Reed-Muller codes.
We show that code switching between these codes can be accomplished using Steane error correction.
We map the PQRM codes to a 2D layout suitable for implementation in arrays of trapped atoms.
arXiv Detail & Related papers (2024-10-30T17:47:35Z) - Quantum Rainbow Codes [0.0]
We introduce rainbow codes, a novel class of quantum error correcting codes generalising colour codes and pin codes.
Rainbow codes can be defined on any $Ddimensional simplicial complex that admits a valid $(D+1)$colouring of its $0simplices.
arXiv Detail & Related papers (2024-08-23T14:56:55Z) - Asymptotically Good Quantum Codes with Transversal Non-Clifford Gates [23.22566380210149]
We construct quantum codes that support $CCZ$ gates over qudits of arbitrary prime power dimension $q$.
The only previously known construction with such linear dimension and distance required a growing alphabet size $q$.
arXiv Detail & Related papers (2024-08-17T16:54:51Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - A family of permutationally invariant quantum codes [54.835469342984354]
We show that codes in the new family correct quantum deletion errors as well as spontaneous decay errors.
Our construction contains some of the previously known permutationally invariant quantum codes.
For small $t$, these conditions can be used to construct new examples of codes by computer.
arXiv Detail & Related papers (2023-10-09T02:37:23Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Quantum Lego: Building Quantum Error Correction Codes from Tensor
Networks [0.0]
We represent complex code constructions as tensor networks built from the tensors of simple codes or states.
The framework endows a network geometry to any code it builds and is valid for constructing stabilizer codes.
We lay out some examples where we glue together simple stabilizer codes to construct non-trivial codes.
arXiv Detail & Related papers (2021-09-16T18:00:00Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z) - Efficient color code decoders in $d\geq 2$ dimensions from toric code
decoders [77.34726150561087]
We prove that the Restriction Decoder successfully corrects errors in the color code if and only if the corresponding toric code decoding succeeds.
We numerically estimate the Restriction Decoder threshold for the color code in two and three dimensions against the bit-flip and phase-flip noise.
arXiv Detail & Related papers (2019-05-17T17:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.