Dequantization and Color Transfer with Diffusion Models
- URL: http://arxiv.org/abs/2307.02698v4
- Date: Sat, 21 Sep 2024 22:05:23 GMT
- Title: Dequantization and Color Transfer with Diffusion Models
- Authors: Vaibhav Vavilala, Faaris Shaik, David Forsyth,
- Abstract summary: quantized images offer easy abstraction for patch-based edits and palette transfer.
We show that our model can generate natural images that respect the color palette the user asked for.
Our method can be usefully extended to another practical edit: recoloring patches of an image while respecting the source texture.
- Score: 5.228564799458042
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We demonstrate an image dequantizing diffusion model that enables novel image edits on natural images. We propose operating on quantized images because they offer easy abstraction for patch-based edits and palette transfer. In particular, we show that color palettes can make the output of the diffusion model easier to control and interpret. We first establish that existing image restoration methods are not sufficient, such as JPEG noise reduction models. We then demonstrate that our model can generate natural images that respect the color palette the user asked for. For palette transfer, we propose a method based on weighted bipartite matching. We then show that our model generates plausible images even after extreme palette transfers, respecting user query. Our method can optionally condition on the source texture in part or all of the image. In doing so, we overcome a common problem in existing image colorization methods that are unable to produce colors with a different luminance than the input. We evaluate several possibilities for texture conditioning and their trade-offs, including luminance, image gradients, and thresholded gradients, the latter of which performed best in maintaining texture and color control simultaneously. Our method can be usefully extended to another practical edit: recoloring patches of an image while respecting the source texture. Our procedure is supported by several qualitative and quantitative evaluations.
Related papers
- Training-free Color-Style Disentanglement for Constrained Text-to-Image Synthesis [16.634138745034733]
We present the first training-free, test-time-only method to disentangle and condition text-to-image models on color and style attributes from reference image.
arXiv Detail & Related papers (2024-09-04T04:16:58Z) - Palette-based Color Transfer between Images [9.471264982229508]
We propose a new palette-based color transfer method that can automatically generate a new color scheme.
With a redesigned palette-based clustering method, pixels can be classified into different segments according to color distribution.
Our method exhibits significant advantages over peer methods in terms of natural realism, color consistency, generality, and robustness.
arXiv Detail & Related papers (2024-05-14T01:41:19Z) - Automatic Controllable Colorization via Imagination [55.489416987587305]
We propose a framework for automatic colorization that allows for iterative editing and modifications.
By understanding the content within a grayscale image, we utilize a pre-trained image generation model to generate multiple images that contain the same content.
These images serve as references for coloring, mimicking the process of human experts.
arXiv Detail & Related papers (2024-04-08T16:46:07Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - PalGAN: Image Colorization with Palette Generative Adversarial Networks [51.59276436217957]
We propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention.
PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances.
arXiv Detail & Related papers (2022-10-20T12:28:31Z) - Palette: Image-to-Image Diffusion Models [50.268441533631176]
We introduce Palette, a simple and general framework for image-to-image translation using conditional diffusion models.
On four challenging image-to-image translation tasks, Palette outperforms strong GAN and regression baselines.
We report several sample quality scores including FID, Inception Score, Classification Accuracy of a pre-trained ResNet-50, and Perceptual Distance against reference images.
arXiv Detail & Related papers (2021-11-10T17:49:29Z) - Generative Probabilistic Image Colorization [2.110198946293069]
We propose a diffusion-based generative process that trains a sequence of probabilistic models to reverse each step of noise corruption.
Given a line-drawing image as input, our method suggests multiple candidate colorized images.
Our proposed approach performed well not only on color-conditional image generation tasks, but also on some practical image completion and inpainting tasks.
arXiv Detail & Related papers (2021-09-29T16:10:12Z) - Texture for Colors: Natural Representations of Colors Using Variable
Bit-Depth Textures [13.180922099929765]
We present an automated method to transform an image to a set of binary textures that represent not only the intensities, but also the colors of the original.
The system yields aesthetically pleasing binary images when tested on a variety of image sources.
arXiv Detail & Related papers (2021-05-04T21:22:02Z) - In&Out : Diverse Image Outpainting via GAN Inversion [89.84841983778672]
Image outpainting seeks for a semantically consistent extension of the input image beyond its available content.
In this work, we formulate the problem from the perspective of inverting generative adversarial networks.
Our generator renders micro-patches conditioned on their joint latent code as well as their individual positions in the image.
arXiv Detail & Related papers (2021-04-01T17:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.