Palette-based Color Transfer between Images
- URL: http://arxiv.org/abs/2405.08263v1
- Date: Tue, 14 May 2024 01:41:19 GMT
- Title: Palette-based Color Transfer between Images
- Authors: Chenlei Lv, Dan Zhang,
- Abstract summary: We propose a new palette-based color transfer method that can automatically generate a new color scheme.
With a redesigned palette-based clustering method, pixels can be classified into different segments according to color distribution.
Our method exhibits significant advantages over peer methods in terms of natural realism, color consistency, generality, and robustness.
- Score: 9.471264982229508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an important subtopic of image enhancement, color transfer aims to enhance the color scheme of a source image according to a reference one while preserving the semantic context. To implement color transfer, the palette-based color mapping framework was proposed. \textcolor{black}{It is a classical solution that does not depend on complex semantic analysis to generate a new color scheme. However, the framework usually requires manual settings, blackucing its practicality.} The quality of traditional palette generation depends on the degree of color separation. In this paper, we propose a new palette-based color transfer method that can automatically generate a new color scheme. With a redesigned palette-based clustering method, pixels can be classified into different segments according to color distribution with better applicability. {By combining deep learning-based image segmentation and a new color mapping strategy, color transfer can be implemented on foreground and background parts independently while maintaining semantic consistency.} The experimental results indicate that our method exhibits significant advantages over peer methods in terms of natural realism, color consistency, generality, and robustness.
Related papers
- Paint Bucket Colorization Using Anime Character Color Design Sheets [72.66788521378864]
We introduce inclusion matching, which allows the network to understand the relationships between segments.
Our network's training pipeline significantly improves performance in both colorization and consecutive frame colorization.
To support our network's training, we have developed a unique dataset named PaintBucket-Character.
arXiv Detail & Related papers (2024-10-25T09:33:27Z) - Automatic Controllable Colorization via Imagination [55.489416987587305]
We propose a framework for automatic colorization that allows for iterative editing and modifications.
By understanding the content within a grayscale image, we utilize a pre-trained image generation model to generate multiple images that contain the same content.
These images serve as references for coloring, mimicking the process of human experts.
arXiv Detail & Related papers (2024-04-08T16:46:07Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - Dequantization and Color Transfer with Diffusion Models [5.228564799458042]
quantized images offer easy abstraction for patch-based edits and palette transfer.
We show that our model can generate natural images that respect the color palette the user asked for.
Our method can be usefully extended to another practical edit: recoloring patches of an image while respecting the source texture.
arXiv Detail & Related papers (2023-07-06T00:07:32Z) - BiSTNet: Semantic Image Prior Guided Bidirectional Temporal Feature
Fusion for Deep Exemplar-based Video Colorization [70.14893481468525]
We present an effective BiSTNet to explore colors of reference exemplars and utilize them to help video colorization.
We first establish the semantic correspondence between each frame and the reference exemplars in deep feature space to explore color information from reference exemplars.
We develop a mixed expert block to extract semantic information for modeling the object boundaries of frames so that the semantic image prior can better guide the colorization process.
arXiv Detail & Related papers (2022-12-05T13:47:15Z) - PalGAN: Image Colorization with Palette Generative Adversarial Networks [51.59276436217957]
We propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention.
PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances.
arXiv Detail & Related papers (2022-10-20T12:28:31Z) - iColoriT: Towards Propagating Local Hint to the Right Region in
Interactive Colorization by Leveraging Vision Transformer [29.426206281291755]
We present iColoriT, a novel point-interactive colorization Vision Transformer capable of propagating user hints to relevant regions.
Our approach colorizes images in real-time by utilizing pixel shuffling, an efficient upsampling technique that replaces the decoder architecture.
arXiv Detail & Related papers (2022-07-14T11:40:32Z) - Deep Line Art Video Colorization with a Few References [49.7139016311314]
We propose a deep architecture to automatically color line art videos with the same color style as the given reference images.
Our framework consists of a color transform network and a temporal constraint network.
Our model can achieve even better coloring results by fine-tuning the parameters with only a small amount of samples.
arXiv Detail & Related papers (2020-03-24T06:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.