論文の概要: Understanding Uncertainty Sampling
- arxiv url: http://arxiv.org/abs/2307.02719v1
- Date: Thu, 6 Jul 2023 01:57:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 15:33:36.223617
- Title: Understanding Uncertainty Sampling
- Title(参考訳): 不確かさサンプリングを理解する
- Authors: Shang Liu, Xiaocheng Li
- Abstract要約: 不確実性サンプリングは、データサンプルのアノテーションを逐次クエリする一般的なアクティブラーニングアルゴリズムである。
使用済みの不確実性尺度と元の損失関数に依存する等価損失の概念を提案する。
ストリームベースとプールベースの両方の設定下で、不確実性サンプリングアルゴリズムに拘束される最初の一般化を提供する。
- 参考スコア(独自算出の注目度): 7.32527270949303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty sampling is a prevalent active learning algorithm that queries
sequentially the annotations of data samples which the current prediction model
is uncertain about. However, the usage of uncertainty sampling has been largely
heuristic: (i) There is no consensus on the proper definition of "uncertainty"
for a specific task under a specific loss; (ii) There is no theoretical
guarantee that prescribes a standard protocol to implement the algorithm, for
example, how to handle the sequentially arrived annotated data under the
framework of optimization algorithms such as stochastic gradient descent. In
this work, we systematically examine uncertainty sampling algorithms under both
stream-based and pool-based active learning. We propose a notion of equivalent
loss which depends on the used uncertainty measure and the original loss
function and establish that an uncertainty sampling algorithm essentially
optimizes against such an equivalent loss. The perspective verifies the
properness of existing uncertainty measures from two aspects: surrogate
property and loss convexity. Furthermore, we propose a new notion for designing
uncertainty measures called \textit{loss as uncertainty}. The idea is to use
the conditional expected loss given the features as the uncertainty measure.
Such an uncertainty measure has nice analytical properties and generality to
cover both classification and regression problems, which enable us to provide
the first generalization bound for uncertainty sampling algorithms under both
stream-based and pool-based settings, in the full generality of the underlying
model and problem. Lastly, we establish connections between certain variants of
the uncertainty sampling algorithms with risk-sensitive objectives and
distributional robustness, which can partly explain the advantage of
uncertainty sampling algorithms when the sample size is small.
- Abstract(参考訳): 不確実性サンプリングは、現在の予測モデルが不確実であるデータサンプルの注釈を逐次クエリする、一般的なアクティブラーニングアルゴリズムである。
しかし、不確実性サンプリングの使用は概ねヒューリスティックである。
(i)特定の損失を受けた特定のタスクに対する「不確実性」の適切な定義についての合意がないこと。
(II)アルゴリズムを実装するための標準プロトコルを規定する理論的保証はない。例えば、確率勾配降下のような最適化アルゴリズムの枠組みの下で、逐次到着した注釈付きデータをどう扱うか。
本研究では,ストリームベースとプールベースの両方のアクティブラーニングの下で不確実性サンプリングアルゴリズムを体系的に検討する。
そこで本研究では, 不確実性尺度と元の損失関数に依存する等価損失の概念を提案し, 不確実性サンプリングアルゴリズムが等価損失に対して本質的に最適化することを示す。
この観点は、既存の不確実性対策の正当性を2つの側面から検証する。
さらに、不確実性測度を不確実性として設計するための新しい概念である \textit{loss as uncertainty} を提案する。
特徴を不確実性尺度として考慮すれば、条件付き期待損失を使用することが目的である。
このような不確実性測度は、分類問題と回帰問題の両方をカバーする優れた解析的性質と一般性を有しており、基礎となるモデルと問題の完全な一般性において、ストリームベースとプールベースの設定の両方において不確実性サンプリングアルゴリズムに束縛された最初の一般化を提供することができる。
最後に,リスクに敏感な目標と分布的ロバスト性を持つ不確実性サンプリングアルゴリズムのある種の変種間の接続を確立することにより,サンプルサイズが小さい場合の不確実性サンプリングアルゴリズムの利点を部分的に説明できる。
関連論文リスト
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods? [26.344949402398917]
本稿では,顕在的深層学習の新たな理論的考察について述べる。
これは二階損失関数の最適化の難しさを強調している。
第二次損失最小化における識別可能性と収束性の問題に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2024-02-14T10:07:05Z) - A Data-Driven Measure of Relative Uncertainty for Misclassification
Detection [25.947610541430013]
誤分類検出のための観測者に対して,不確実性に関するデータ駆動測度を導入する。
ソフト予測の分布パターンを学習することにより,不確実性を測定することができる。
複数の画像分類タスクに対する経験的改善を示し、最先端の誤分類検出方法より優れていることを示す。
論文 参考訳(メタデータ) (2023-06-02T17:32:03Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
時間周波数領域における監視されたマスキングアプローチは、ディープニューラルネットワークを使用して乗法マスクを推定し、クリーンな音声を抽出することを目的としている。
これにより、信頼性の保証や尺度を使わずに、各入力に対する単一の見積もりが導かれる。
クリーン音声推定における不確実性モデリングの利点について検討する。
論文 参考訳(メタデータ) (2023-05-15T15:55:12Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
不確実性は時系列予測タスクに不可欠な考慮事項である。
本研究では,交通予測の不確かさの定量化に焦点をあてる。
STUQ(Deep S-Temporal Uncertainity Quantification)を開発した。
論文 参考訳(メタデータ) (2022-08-11T15:21:53Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。