Fine-grained Action Analysis: A Multi-modality and Multi-task Dataset of Figure Skating
- URL: http://arxiv.org/abs/2307.02730v3
- Date: Tue, 9 Apr 2024 13:18:22 GMT
- Title: Fine-grained Action Analysis: A Multi-modality and Multi-task Dataset of Figure Skating
- Authors: Sheng-Lan Liu, Yu-Ning Ding, Gang Yan, Si-Fan Zhang, Jin-Rong Zhang, Wen-Yue Chen, Xue-Hai Xu,
- Abstract summary: We propose a Multi-modality and Multi-task dataset of Figure Skating (MMFS) which was collected from the World Figure Skating Championships.
MMFS, which possesses action recognition and action quality assessment, captures RGB, skeleton, and is collected the score of actions from 11671 clips with 256 categories including spatial and temporal labels.
- Score: 10.391609684374268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fine-grained action analysis of the existing action datasets is challenged by insufficient action categories, low fine granularities, limited modalities, and tasks. In this paper, we propose a Multi-modality and Multi-task dataset of Figure Skating (MMFS) which was collected from the World Figure Skating Championships. MMFS, which possesses action recognition and action quality assessment, captures RGB, skeleton, and is collected the score of actions from 11671 clips with 256 categories including spatial and temporal labels. The key contributions of our dataset fall into three aspects as follows. (1) Independently spatial and temporal categories are first proposed to further explore fine-grained action recognition and quality assessment. (2) MMFS first introduces the skeleton modality for complex fine-grained action quality assessment. (3) Our multi-modality and multi-task dataset encourage more action analysis models. To benchmark our dataset, we adopt RGB-based and skeleton-based baseline methods for action recognition and action quality assessment.
Related papers
- Temporal Action Localization with Enhanced Instant Discriminability [66.76095239972094]
Temporal action detection (TAD) aims to detect all action boundaries and their corresponding categories in an untrimmed video.
We propose a one-stage framework named TriDet to resolve imprecise predictions of action boundaries by existing methods.
Experimental results demonstrate the robustness of TriDet and its state-of-the-art performance on multiple TAD datasets.
arXiv Detail & Related papers (2023-09-11T16:17:50Z) - One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton
Matching [77.6989219290789]
One-shot skeleton action recognition aims to learn a skeleton action recognition model with a single training sample.
This paper presents a novel one-shot skeleton action recognition technique that handles skeleton action recognition via multi-scale spatial-temporal feature matching.
arXiv Detail & Related papers (2023-07-14T11:52:10Z) - The MI-Motion Dataset and Benchmark for 3D Multi-Person Motion
Prediction [13.177817435234449]
3D multi-person motion prediction is a challenging task that involves modeling individual behaviors and interactions between people.
We introduce the Multi-Person Interaction Motion (MI-Motion) dataset, which includes skeleton sequences of multiple individuals collected by motion capture systems.
The dataset contains 167k frames of interacting people's skeleton poses and is categorized into 5 different activity scenes.
arXiv Detail & Related papers (2023-06-23T15:38:22Z) - AIMS: All-Inclusive Multi-Level Segmentation [93.5041381700744]
We propose a new task, All-Inclusive Multi-Level (AIMS), which segments visual regions into three levels: part, entity, and relation.
We also build a unified AIMS model through multi-dataset multi-task training to address the two major challenges of annotation inconsistency and task correlation.
arXiv Detail & Related papers (2023-05-28T16:28:49Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Quo Vadis, Skeleton Action Recognition ? [11.389618872289647]
We study current and upcoming frontiers across the landscape of skeleton-based human action recognition.
To study skeleton-action recognition in the wild, we introduce Skeletics-152, a curated subset of RGB videos sourced from Kinetics-700.
We extend our study to include out-of-context actions by introducing Skeleton-Mimetics and Metaphorics datasets.
arXiv Detail & Related papers (2020-07-04T11:02:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.