Recognizing Identities From Human Skeletons: A Survey on 3D Skeleton Based Person Re-Identification
- URL: http://arxiv.org/abs/2401.15296v2
- Date: Thu, 06 Feb 2025 13:44:23 GMT
- Title: Recognizing Identities From Human Skeletons: A Survey on 3D Skeleton Based Person Re-Identification
- Authors: Haocong Rao, Chunyan Miao,
- Abstract summary: Person re-identification via 3D skeletons is an important emerging research area that attracts increasing attention within the pattern recognition community.
We provide a comprehensive review and analysis of recent SRID advances.
A thorough evaluation of state-of-the-art SRID methods is conducted over various types of benchmarks and protocols to compare their effectiveness and efficiency.
- Score: 60.939250172443586
- License:
- Abstract: Person re-identification via 3D skeletons is an important emerging research area that attracts increasing attention within the pattern recognition community. With distinctive advantages across various application scenarios, numerous 3D skeleton based person re-identification (SRID) methods with diverse skeleton modeling and learning paradigms have been proposed in recent years. In this survey, we provide a comprehensive review and analysis of recent SRID advances. First of all, we define the SRID task and provide an overview of its origin and major advancements. Secondly, we formulate a systematic taxonomy that organizes existing methods into three categories based on different skeleton modeling ($i.e.,$ hand-crafted, sequence-based, graph-based). Then, we elaborate on the representative models along these three categories with an analysis of their merits and limitations. Meanwhile, we provide an in-depth review of mainstream supervised, self-supervised, and unsupervised SRID learning paradigms and corresponding skeleton semantics learning tasks. A thorough evaluation of state-of-the-art SRID methods is further conducted over various types of benchmarks and protocols to compare their effectiveness and efficiency. Finally, we discuss the challenges of existing studies along with promising directions for future research, highlighting research impacts and potential applications of SRID.
Related papers
- Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
Graph anomaly detection (GAD) aims to identify unusual graph instances (nodes, edges, subgraphs, or graphs)
Deep learning approaches, graph neural networks (GNNs) in particular, have been emerging as a promising paradigm for GAD.
arXiv Detail & Related papers (2024-09-16T03:05:11Z) - Self-Supervised Skeleton-Based Action Representation Learning: A Benchmark and Beyond [19.074841631219233]
Self-supervised learning (SSL) has been proven effective for skeleton-based action understanding.
In this paper, we conduct a comprehensive survey on self-supervised skeleton-based action representation learning.
arXiv Detail & Related papers (2024-06-05T06:21:54Z) - Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation [0.8897689150430447]
We conduct the first systematic benchmark study for variants of 3D U-shaped models.
Our study examines the impact of different attention mechanisms, the number of resolution stages, and network configurations on segmentation accuracy and computational complexity.
arXiv Detail & Related papers (2024-02-05T17:43:02Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - Human Body Pose Estimation for Gait Identification: A Comprehensive
Survey of Datasets and Models [4.17510581764131]
Person identification is a problem that has received substantial attention, particularly in security domains.
There are several review studies addressing person identification such as the utilization of facial images, silhouette images, and wearable sensor.
Despite skeleton-based person identification gaining popularity while overcoming the challenges of traditional approaches, existing survey studies lack the comprehensive review of skeleton-based approaches to gait identification.
arXiv Detail & Related papers (2023-05-23T07:30:00Z) - Unsupervised Pathology Detection: A Deep Dive Into the State of the Art [6.667150890634173]
We evaluate a selection of cutting-edge Unsupervised Anomaly Detection (UAD) methods on multiple medical datasets.
Our experiments demonstrate that newly developed feature-modeling methods from the industrial and medical literature achieve increased performance.
We show that such methods are capable of benefiting from recently developed self-supervised pre-training algorithms.
arXiv Detail & Related papers (2023-03-01T16:03:25Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD) mimics the humans' ability of learning to learn.
FSOD intelligently transfers the learned generic object knowledge from the common heavy-tailed, to the novel long-tailed object classes.
We give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols.
arXiv Detail & Related papers (2022-03-27T04:11:28Z) - Recent Progress in Appearance-based Action Recognition [73.6405863243707]
Action recognition is a task to identify various human actions in a video.
Recent appearance-based methods have achieved promising progress towards accurate action recognition.
arXiv Detail & Related papers (2020-11-25T10:18:12Z) - View-Invariant Gait Recognition with Attentive Recurrent Learning of
Partial Representations [27.33579145744285]
We propose a network that first learns to extract gait convolutional energy maps (GCEM) from frame-level convolutional features.
It then adopts a bidirectional neural network to learn from split bins of the GCEM, thus exploiting the relations between learned partial recurrent representations.
Our proposed model has been extensively tested on two large-scale CASIA-B and OU-M gait datasets.
arXiv Detail & Related papers (2020-10-18T20:20:43Z) - A Comprehensive Study on Temporal Modeling for Online Action Detection [50.558313106389335]
Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years.
This paper aims to provide a comprehensive study on temporal modeling for OAD including four meta types of temporal modeling methods.
We present several hybrid temporal modeling methods, which outperform the recent state-of-the-art methods with sizable margins on THUMOS-14 and TVSeries.
arXiv Detail & Related papers (2020-01-21T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.