論文の概要: The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection
- arxiv url: http://arxiv.org/abs/2307.02892v2
- Date: Fri, 7 Jul 2023 09:31:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 14:38:26.896304
- Title: The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection
- Title(参考訳): 抑うつ状態における音声特徴の関係--抑うつ検出の速度と性能向上のための特徴相関-
- Authors: Fuxiang Tao, Wei Ma, Xuri Ge, Anna Esposito, Alessandro Vinciarelli
- Abstract要約: この研究は、抑うつが音声から抽出した特徴間の相関を変化させることを示す。
このような洞察を用いることで、SVMとLSTMに基づく抑うつ検出器のトレーニング速度と性能を向上させることができる。
- 参考スコア(独自算出の注目度): 69.88072583383085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work shows that depression changes the correlation between features
extracted from speech. Furthermore, it shows that using such an insight can
improve the training speed and performance of depression detectors based on
SVMs and LSTMs. The experiments were performed over the Androids Corpus, a
publicly available dataset involving 112 speakers, including 58 people
diagnosed with depression by professional psychiatrists. The results show that
the models used in the experiments improve in terms of training speed and
performance when fed with feature correlation matrices rather than with feature
vectors. The relative reduction of the error rate ranges between 23.1% and
26.6% depending on the model. The probable explanation is that feature
correlation matrices appear to be more variable in the case of depressed
speakers. Correspondingly, such a phenomenon can be thought of as a depression
marker.
- Abstract(参考訳): この研究は、抑うつが音声から抽出した特徴間の相関を変化させることを示す。
さらに、このような知見を用いることで、SVMとLSTMに基づく抑うつ検知器の訓練速度と性能を向上させることができることを示す。
実験は、プロの精神科医によってうつ病と診断された58人を含む112人の話者を含む公開データセットであるAndroids Corpus上で実施された。
その結果,実験で使用したモデルでは,特徴ベクトルよりも特徴相関行列が与えられ,学習速度と性能が向上した。
誤差率の相対的な減少はモデルによって23.1%から26.6%の範囲である。
特徴相関行列は, 抑えられた話者の場合, より可変である可能性が示唆された。
それに応じて、このような現象は抑うつマーカーと考えることができる。
関連論文リスト
- A BERT-Based Summarization approach for depression detection [1.7363112470483526]
うつ病は世界中で流行する精神疾患であり、対処されないと深刻な反感を引き起こす可能性がある。
機械学習と人工知能は、さまざまなデータソースからのうつ病指標を自律的に検出することができる。
本研究では,入力テキストの長さと複雑さを低減させる前処理手法として,テキスト要約を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:14:34Z) - STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data [12.344849949026989]
時間的特徴と空間的特徴の両方を捉えるために,CNNとRNNを統合してうつ病を診断するための時空間アグリゲーションネットワーク(STANet)を提案する。
実験の結果、STANetは82.38%の精度と90.72%のAUCでうつ病診断性能に優れていた。
論文 参考訳(メタデータ) (2024-07-31T04:06:47Z) - Hierarchical attention interpretation: an interpretable speech-level
transformer for bi-modal depression detection [6.561362931802501]
うつ病は一般的な精神疾患である。機械学習によって実現された音声を用いた自動うつ病検出ツールは、うつ病の早期スクリーニングに役立つ。
本稿では、セグメントレベルのラベリングによるノイズと、モデル解釈可能性の欠如という、そのようなツールの臨床的実装を妨げる可能性のある2つの制限に対処する。
論文 参考訳(メタデータ) (2023-09-23T20:48:58Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
我々は,抑うつ,抑うつ症状,および,胸腺で収集された音声,表情,認知ゲームデータから得られる特徴の関連性を把握するためにベイズ的枠組みを適用した。
論文 参考訳(メタデータ) (2022-11-09T14:48:13Z) - On the Interaction Between Differential Privacy and Gradient Compression
in Deep Learning [55.22219308265945]
差分プライバシーと勾配圧縮のガウス的メカニズムがディープラーニングにおけるテスト精度にどのように影響するかを考察する。
勾配圧縮は一般に非プライベートトレーニングではテスト精度に悪影響を及ぼすが、差分プライベートトレーニングではテスト精度を改善することがある。
論文 参考訳(メタデータ) (2022-11-01T20:28:45Z) - Deep Temporal Modelling of Clinical Depression through Social Media Text [1.513693945164213]
ユーザの時間的ソーシャルメディア投稿に基づいて,ユーザレベルの臨床うつ病を検出するモデルを構築した。
本モデルでは,うつ病症状に対する医用注釈付きツイートの最大のサンプルをもとに訓練した,うつ病検出(DSD)分類器を用いた。
論文 参考訳(メタデータ) (2022-10-28T18:31:52Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Generalized Dilated CNN Models for Depression Detection Using Inverted
Vocal Tract Variables [4.050982413149992]
声帯バイオマーカーを用いた抑うつ検出は高度に研究されている分野である。
既存の研究の発見は主に、結果の一般化性を制限する単一のデータベース上で検証されている。
拡張コニキュラルニューラルネットワークを用いた抑うつ検出のための一般化分類器を提案する。
論文 参考訳(メタデータ) (2020-11-13T03:12:36Z) - Optimal Learning with Excitatory and Inhibitory synapses [91.3755431537592]
相関関係の存在下でアナログ信号間の関連性を保持するという課題について検討する。
ランダムな入力および出力プロセスのパワースペクトルの観点から、典型的な学習性能を特徴付ける。
論文 参考訳(メタデータ) (2020-05-25T18:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。