Sequential Neural Barriers for Scalable Dynamic Obstacle Avoidance
- URL: http://arxiv.org/abs/2307.03015v1
- Date: Thu, 6 Jul 2023 14:24:17 GMT
- Title: Sequential Neural Barriers for Scalable Dynamic Obstacle Avoidance
- Authors: Hongzhan Yu, Chiaki Hirayama, Chenning Yu, Sylvia Herbert, Sicun Gao
- Abstract summary: We propose a novel method for compositional learning of Sequential Neural Control Barrier models (SNCBFs)
Our approach exploits an important observation: the spatial interaction patterns of multiple dynamic obstacles can be decomposed and predicted through temporal sequences of states for each obstacle.
We demonstrate the benefits of the proposed methods in improving dynamic collision avoidance in comparison with existing methods.
- Score: 7.375976854181687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are two major challenges for scaling up robot navigation around dynamic
obstacles: the complex interaction dynamics of the obstacles can be hard to
model analytically, and the complexity of planning and control grows
exponentially in the number of obstacles. Data-driven and learning-based
methods are thus particularly valuable in this context. However, data-driven
methods are sensitive to distribution drift, making it hard to train and
generalize learned models across different obstacle densities. We propose a
novel method for compositional learning of Sequential Neural Control Barrier
models (SNCBFs) to achieve scalability. Our approach exploits an important
observation: the spatial interaction patterns of multiple dynamic obstacles can
be decomposed and predicted through temporal sequences of states for each
obstacle. Through decomposition, we can generalize control policies trained
only with a small number of obstacles, to environments where the obstacle
density can be 100x higher. We demonstrate the benefits of the proposed methods
in improving dynamic collision avoidance in comparison with existing methods
including potential fields, end-to-end reinforcement learning, and
model-predictive control. We also perform hardware experiments and show the
practical effectiveness of the approach in the supplementary video.
Related papers
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT) is essential for intelligent systems like autonomous driving and robotic sensing.
We propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module.
This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error.
arXiv Detail & Related papers (2024-11-13T08:34:07Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
We propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control.
A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects.
generated video sequences by our TrackDiffusion can be used as training data for visual perception models.
arXiv Detail & Related papers (2023-12-01T15:24:38Z) - Denoising Heat-inspired Diffusion with Insulators for Collision Free
Motion Planning [3.074694788117593]
Diffusion models have risen as a powerful tool in robotics due to their flexibility and multi-modality.
We present a method that simultaneously generates only reachable goals and plans motions that avoid obstacles.
arXiv Detail & Related papers (2023-10-19T09:39:07Z) - Amortized Network Intervention to Steer the Excitatory Point Processes [8.15558505134853]
Excitatory point processes (i.e., event flows) occurring over dynamic graphs provide a fine-grained model to capture how discrete events may spread over time and space.
How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases.
We design an Amortized Network Interventions framework, allowing for the pooling of optimal policies from history and other contexts.
arXiv Detail & Related papers (2023-10-06T11:17:28Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Decentralized Swarm Collision Avoidance for Quadrotors via End-to-End
Reinforcement Learning [28.592704336574158]
We draw biological inspiration from flocks of starlings and apply the insight to end-to-end learned decentralized collision avoidance.
We propose a new, scalable observation model following a biomimetic topological interaction rule.
Our learned policies are tested in simulation and subsequently transferred to real-world drones to validate their real-world applicability.
arXiv Detail & Related papers (2021-04-30T11:19:03Z) - Trajectory Tracking of Underactuated Sea Vessels With Uncertain
Dynamics: An Integral Reinforcement Learning Approach [2.064612766965483]
An online machine learning mechanism based on integral reinforcement learning is proposed to find a solution for a class of nonlinear tracking problems.
The solution is implemented using an online value iteration process which is realized by employing means of the adaptive critics and gradient descent approaches.
arXiv Detail & Related papers (2021-04-01T01:41:49Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
Traditional approaches to quadruped control employ simplified, hand-derived models.
This significantly reduces the capability of the robot since its effective kinematic range is curtailed.
In this work, these challenges are addressed by framing quadruped control as optimisation in a structured latent space.
A deep generative model captures a statistical representation of feasible joint configurations, whilst complex dynamic and terminal constraints are expressed via high-level, semantic indicators.
We validate the feasibility of locomotion trajectories optimised using our approach both in simulation and on a real-worldmal quadruped.
arXiv Detail & Related papers (2020-07-03T07:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.