Amortized Network Intervention to Steer the Excitatory Point Processes
- URL: http://arxiv.org/abs/2310.04159v2
- Date: Mon, 15 Apr 2024 12:52:30 GMT
- Title: Amortized Network Intervention to Steer the Excitatory Point Processes
- Authors: Zitao Song, Wendi Ren, Shuang Li,
- Abstract summary: Excitatory point processes (i.e., event flows) occurring over dynamic graphs provide a fine-grained model to capture how discrete events may spread over time and space.
How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases.
We design an Amortized Network Interventions framework, allowing for the pooling of optimal policies from history and other contexts.
- Score: 8.15558505134853
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Excitatory point processes (i.e., event flows) occurring over dynamic graphs (i.e., evolving topologies) provide a fine-grained model to capture how discrete events may spread over time and space. How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases through strategically locking down cities to mitigating traffic congestion via traffic light optimization. To address the intricacies of planning and overcome the high dimensionality inherent to such decision-making problems, we design an Amortized Network Interventions (ANI) framework, allowing for the pooling of optimal policies from history and other contexts while ensuring a permutation equivalent property. This property enables efficient knowledge transfer and sharing across diverse contexts. Each task is solved by an H-step lookahead model-based reinforcement learning, where neural ODEs are introduced to model the dynamics of the excitatory point processes. Instead of simulating rollouts from the dynamics model, we derive an analytical mean-field approximation for the event flows given the dynamics, making the online planning more efficiently solvable. We empirically illustrate that this ANI approach substantially enhances policy learning for unseen dynamics and exhibits promising outcomes in steering event flows through network intervention using synthetic and real COVID datasets.
Related papers
- Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
We present a novel reduced-order Model (ROM) that exploits optimal transport theory and displacement to enhance the representation of nonlinear dynamics in complex systems.
We show improved accuracy and efficiency in predicting complex system behaviors, indicating the potential of this approach for a wide range of applications in computational physics and engineering.
arXiv Detail & Related papers (2024-11-13T16:29:33Z) - Off-dynamics Conditional Diffusion Planners [15.321049697197447]
This work explores the use of more readily available, albeit off-dynamics datasets, to address the challenge of data scarcity in Offline RL.
We propose a novel approach using conditional Diffusion Probabilistic Models (DPMs) to learn the joint distribution of the large-scale off-dynamics dataset and the limited target dataset.
arXiv Detail & Related papers (2024-10-16T04:56:43Z) - End-to-end Driving in High-Interaction Traffic Scenarios with Reinforcement Learning [24.578178308010912]
We propose an end-to-end model-based RL algorithm named Ramble to address these issues.
By learning a dynamics model of the environment, Ramble can foresee upcoming traffic events and make more informed, strategic decisions.
Ramble achieves state-of-the-art performance regarding route completion rate and driving score on the CARLA Leaderboard 2.0, showcasing its effectiveness in managing complex and dynamic traffic situations.
arXiv Detail & Related papers (2024-10-03T06:45:59Z) - Learning from Demonstration with Implicit Nonlinear Dynamics Models [16.26835655544884]
We develop a recurrent neural network layer that includes a fixed nonlinear dynamical system with tunable dynamical properties for modelling temporal dynamics.
We validate the efficacy of our neural network layer on the task of reproducing human handwriting motions using the LASA Human Handwriting dataset.
arXiv Detail & Related papers (2024-09-27T14:12:49Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - A purely data-driven framework for prediction, optimization, and control
of networked processes: application to networked SIS epidemic model [0.8287206589886881]
We develop a data-driven framework based on operator-theoretic techniques to identify and control nonlinear dynamics over large-scale networks.
The proposed approach requires no prior knowledge of the network structure and identifies the underlying dynamics solely using a collection of two-step snapshots of the states.
arXiv Detail & Related papers (2021-08-01T03:57:10Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.