Experimental demonstration of a high-fidelity virtual two-qubit gate
- URL: http://arxiv.org/abs/2307.03232v2
- Date: Sat, 9 Dec 2023 11:29:17 GMT
- Title: Experimental demonstration of a high-fidelity virtual two-qubit gate
- Authors: Akhil Pratap Singh, Kosuke Mitarai, Yasunari Suzuki, Kentaro Heya,
Yutaka Tabuchi, Keisuke Fujii, Yasunobu Nakamura
- Abstract summary: We experimentally demonstrate a virtual two-qubit gate and characterize it using quantum process tomography(QPT)
The virtual two-qubit gate decomposes an actual two-qubit gate into single-qubit unitary gates and projection gates in quantum circuits for expectation-value estimation.
- Score: 0.9616440029846075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally demonstrate a virtual two-qubit gate and characterize it
using quantum process tomography~(QPT). The virtual two-qubit gate decomposes
an actual two-qubit gate into single-qubit unitary gates and projection gates
in quantum circuits for expectation-value estimation. We implement projection
gates via mid-circuit measurements. The deterministic sampling scheme reduces
the number of experimental circuit evaluations required for decomposing a
virtual two-qubit gate. We also apply quantum error mitigation to suppress the
effect of measurement errors and improve the average gate fidelity of a virtual
controlled-$Z$ (CZ) gate to $f_{\rm av} = 0.9938 \pm 0.0002$. Our results
highlight a practical approach to implement virtual two-qubit gates with high
fidelities, which are useful for simulating quantum circuits using fewer qubits
and implementing two-qubit gates on a distant pair of qubits.
Related papers
- Dynamically corrected gates in silicon singlet-triplet spin qubits [0.0]
We experimentally implement corrected gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum dot.
The corrected gates reduce infidelities by about a factor of three, resulting in gate fidelities above 0.99 for both identity and Hadamard gates.
arXiv Detail & Related papers (2024-05-24T02:02:51Z) - High-fidelity $\sqrt{i\text{SWAP}}$ gates using a fixed coupler driven by two microwave pulses [12.986786945391236]
We propose a microwave-control protocol for the implementation of a two-qubit gate employing two transmon qubits coupled via a fixed-frequency transmon coupler.
We show that high-fidelity $sqrtitextSWAP$ gates can be achieved.
arXiv Detail & Related papers (2024-04-27T08:08:20Z) - Error suppression by a virtual two-qubit gate [0.0]
We consider employing a virtual two-qubit gate (VTQG) as an error suppression technique.
The VTQG enables a non-local operation between a pair of distant qubits using only single qubit gates and projective measurements.
We have observed one order of magnitude improvement in accuracy for the quantum simulation of the transverse-field Ising model with 8 qubits.
arXiv Detail & Related papers (2022-12-11T12:42:42Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Extensive characterization of a family of efficient three-qubit gates at
the coherence limit [0.4471952592011114]
We implement a three-qubit gate by simultaneously applying two-qubit operations.
We generate two classes of entangled states, the GHZ and W states, by applying the new gate only once.
We analyze the experimental and statistical errors on the fidelity of the gates and of the target states.
arXiv Detail & Related papers (2022-07-06T19:42:29Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - High-fidelity, high-scalability two-qubit gate scheme for
superconducting qubits [16.01171409402694]
We experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit.
The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%.
Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.
arXiv Detail & Related papers (2020-06-21T17:55:28Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.