Machine Learning to detect cyber-attacks and discriminating the types of
power system disturbances
- URL: http://arxiv.org/abs/2307.03323v1
- Date: Thu, 6 Jul 2023 22:32:06 GMT
- Title: Machine Learning to detect cyber-attacks and discriminating the types of
power system disturbances
- Authors: Diane Tuyizere and Remy Ihabwikuzo
- Abstract summary: This research proposes a machine learning-based attack detection model for power systems, specifically targeting smart grids.
By utilizing data and logs collected from Phasor Measuring Devices (PMUs), the model aims to learn system behaviors and effectively identify potential security boundaries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research proposes a machine learning-based attack detection model for
power systems, specifically targeting smart grids. By utilizing data and logs
collected from Phasor Measuring Devices (PMUs), the model aims to learn system
behaviors and effectively identify potential security boundaries. The proposed
approach involves crucial stages including dataset pre-processing, feature
selection, model creation, and evaluation. To validate our approach, we used a
dataset used, consist of 15 separate datasets obtained from different PMUs,
relay snort alarms and logs. Three machine learning models: Random Forest,
Logistic Regression, and K-Nearest Neighbour were built and evaluated using
various performance metrics. The findings indicate that the Random Forest model
achieves the highest performance with an accuracy of 90.56% in detecting power
system disturbances and has the potential in assisting operators in
decision-making processes.
Related papers
- Anticipated Network Surveillance -- An extrapolated study to predict
cyber-attacks using Machine Learning and Data Analytics [0.0]
This paper discusses a novel technique to predict an upcoming attack in a network based on several data parameters.
The proposed model comprises dataset pre-processing, and training, followed by the testing phase.
Based on the results of the testing phase, the best model is selected using which, event class which may lead to an attack is extracted.
arXiv Detail & Related papers (2023-12-27T01:09:11Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
We propose an approach to estimate the number of samples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset.
We introduce a novel piecewise power law (PPL) that handles the two data differently.
arXiv Detail & Related papers (2023-03-02T21:48:22Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
We propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability.
Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022.
arXiv Detail & Related papers (2022-12-08T20:19:27Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression [1.5039745292757671]
We propose an approach to detect the dataset shifts effectively for regression problems.
Our approach is based on the inductive conformal anomaly detection and utilizes a variational autoencoder for regression model.
We demonstrate our approach by using an advanced emergency braking system implemented in an open-source simulator for self-driving cars.
arXiv Detail & Related papers (2021-04-14T03:46:37Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Dynamic Bayesian Approach for decision-making in Ego-Things [8.577234269009042]
This paper presents a novel approach to detect abnormalities in dynamic systems based on multisensory data and feature selection.
Growing neural gas (GNG) is employed for clustering multisensory data into a set of nodes.
Our method uses a Markov Jump particle filter (MJPF) for state estimation and abnormality detection.
arXiv Detail & Related papers (2020-10-28T11:38:51Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.