論文の概要: Derivative Free Weight-space Ensembling
- arxiv url: http://arxiv.org/abs/2307.03506v2
- Date: Wed, 26 Jul 2023 09:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 15:26:13.214027
- Title: Derivative Free Weight-space Ensembling
- Title(参考訳): 導電性自由ウェイト空間の組立
- Authors: Dean Ninalga
- Abstract要約: 本稿では,オープンドメイン対話のための数サンプルタスク転送手法であるDFWEを紹介する。
対象タスクのエキスパートモデルをそれぞれ微調整し、複数の異なる知識ベースから目標タスクにアプローチする。
勾配自由度最適化アルゴリズムを用いてモデルの重み付けを線形に補間し,より効率的な重み付けを求める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work suggests that interpolating between the weights of two
specialized language models can transfer knowledge between tasks in a way that
multi-task learning cannot. However, very few have explored interpolation
between more than two models, where each has a distinct knowledge base. In this
paper, we introduce Derivative Free Weight-space Ensembling (DFWE), a new
few-sample task transfer approach for open-domain dialogue. Our framework
creates a set of diverse expert language models trained using a predefined set
of source tasks. Next, we finetune each of the expert models on the target
task, approaching the target task from several distinct knowledge bases.
Finally, we linearly interpolate between the model weights using a
gradient-free-optimization algorithm, to efficiently find a good interpolation
weighting. We demonstrate the effectiveness of the method on FETA-Friends
outperforming the standard pretrain-finetune approach.
- Abstract(参考訳): 最近の研究は、2つの専門言語モデルの重み間の補間によって、マルチタスク学習ができない方法でタスク間で知識を伝達できることを示唆している。
しかし、2つ以上のモデル間の補間を探索する事例はほとんどなく、それぞれに異なる知識基盤がある。
本稿では,オープンドメイン対話のための新しいタスク転送手法であるdfwe(dederative free weight-space ensembling)を提案する。
我々のフレームワークは、事前定義されたソースタスクセットを使用して訓練された多様な専門家言語モデルを作成する。
次に,対象タスクにおける各専門家モデルの精細化を行い,複数の異なる知識ベースから対象タスクに接近する。
最後に、勾配最適化アルゴリズムを用いてモデル重み間の線形補間を行い、補間重み付けを効率的に行う。
本手法は,feta-friendsの標準的なプリトレイン・フィニチューンアプローチに匹敵する効果を示す。
関連論文リスト
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - On Giant's Shoulders: Effortless Weak to Strong by Dynamic Logits Fusion [23.63688816017186]
既存の弱強法では、静的な知識伝達比と、複雑な知識を伝達するための単一の小さなモデルを用いることが多い。
本稿では,複数のタスク固有小モデルに対して,それぞれ異なるタスクに特化して動作する動的ロジット融合手法を提案する。
本手法では,シングルタスクシナリオでは96.4%,マルチタスクシナリオでは86.3%のパフォーマンスギャップを埋める。
論文 参考訳(メタデータ) (2024-06-17T03:07:41Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
一般的な事前訓練された大規模モデルから微調整されたマージングモデルは、様々なタスクに特化しているが、様々なタスクでうまく機能するマルチタスクモデルを構築するための安価でスケーラブルな戦略として実証されている。
本稿では、共通低次元部分空間を同定し、その共有情報トラック干渉問題を性能を犠牲にすることなく利用するための連続緩和(Concrete)部分空間学習法を提案する。
論文 参考訳(メタデータ) (2023-12-11T07:24:54Z) - Scalarization for Multi-Task and Multi-Domain Learning at Scale [15.545810422759295]
複数の入力ドメインと/または出力タスクで単一のモデルをトレーニングすることで、複数のソースからの情報を統一されたバックボーンに圧縮することができる。
しかし、これらのネットワークの最適化は、異なるタスクやドメイン間の相違による課題である。
論文 参考訳(メタデータ) (2023-10-13T07:31:04Z) - Pareto Manifold Learning: Tackling multiple tasks via ensembles of
single-task models [50.33956216274694]
マルチタスク学習(MTL)では、タスクは、ソリューションへの最適化を導くのではなく、互いに達成したパフォーマンスを競い、制限することができる。
重み空間におけるアンサンブル手法であるTextitPareto Manifold Learningを提案する。
論文 参考訳(メタデータ) (2022-10-18T11:20:54Z) - Meta-Learning via Classifier(-free) Guidance [5.812784742024491]
最先端のメタ学習技術は、目に見えないタスクへのゼロショット適応を最適化しない。
本稿では,自然言語指導によるゼロショット性能向上のためのメタ学習手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T11:09:35Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
そこで本研究では,メタトレーニングタスクの分散化を目的とした,ドメインに依存しないタスク拡張手法Meta-Interpolationを提案する。
様々な領域にまたがる8つのデータセットに対してメタ補間の有効性を実証的に検証した。
論文 参考訳(メタデータ) (2022-05-20T06:53:03Z) - Interval Bound Interpolation for Few-shot Learning with Few Tasks [15.85259386116784]
少ないショット学習は、さまざまなタスクのトレーニングから得られた知識を、限られたラベル付きデータで見つからないタスクに転送することを目的としている。
そこで本研究では,頑健な学習文献から数ショット学習まで,インターバルバウンダリの概念を紹介した。
次に、利用可能なタスクと各インターバル境界を補間することにより、トレーニングのための新しいタスクを人工的に形成する。
論文 参考訳(メタデータ) (2022-04-07T15:29:27Z) - Learning from demonstration using products of experts: applications to
manipulation and task prioritization [12.378784643460474]
異なるタスク空間におけるモデルの融合は、専門家(PoE)の積として表現できることを示す。
複数の実験を行い、PoEフレームワークで異なるモデルを共同で学習することで、モデルの品質が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-10-07T16:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。