論文の概要: Incentive Allocation in Vertical Federated Learning Based on Bankruptcy
Problem
- arxiv url: http://arxiv.org/abs/2307.03515v1
- Date: Fri, 7 Jul 2023 11:08:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 12:38:48.516792
- Title: Incentive Allocation in Vertical Federated Learning Based on Bankruptcy
Problem
- Title(参考訳): 破産問題に基づく垂直フェデレート学習におけるインセンティブ割当
- Authors: Afsana Khan, Marijn ten Thij, Frank Thuijsman and Anna Wilbik
- Abstract要約: 垂直連合学習(VFL)は、異なるパーティ間で垂直に分割されたプライベートデータを使用して、機械学習モデルを協調的にトレーニングするための有望なアプローチである。
本稿では,VFLプロセスへの貢献に基づいて,活動政党による受動的政党へのインセンティブ付与の問題に焦点をあてる。
我々は、この問題を、倒産問題として知られるヌクレロスゲーム理論の変種として定式化し、タルムードの除算則を用いて解決する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vertical federated learning (VFL) is a promising approach for collaboratively
training machine learning models using private data partitioned vertically
across different parties. Ideally in a VFL setting, the active party (party
possessing features of samples with labels) benefits by improving its machine
learning model through collaboration with some passive parties (parties
possessing additional features of the same samples without labels) in a privacy
preserving manner. However, motivating passive parties to participate in VFL
can be challenging. In this paper, we focus on the problem of allocating
incentives to the passive parties by the active party based on their
contributions to the VFL process. We formulate this problem as a variant of the
Nucleolus game theory concept, known as the Bankruptcy Problem, and solve it
using the Talmud's division rule. We evaluate our proposed method on synthetic
and real-world datasets and show that it ensures fairness and stability in
incentive allocation among passive parties who contribute their data to the
federated model. Additionally, we compare our method to the existing solution
of calculating Shapley values and show that our approach provides a more
efficient solution with fewer computations.
- Abstract(参考訳): 垂直連合学習(VFL)は、異なるパーティ間で垂直に分割されたプライベートデータを使用して、機械学習モデルを協調的にトレーニングするための有望なアプローチである。
理想的には、アクティブパーティ(ラベル付きサンプルの特徴を持つパーティー)は、プライバシー保護の方法で一部の受動的パーティ(ラベルなしサンプルの付加的な特徴を持つパーティー)とのコラボレーションを通じて、機械学習モデルを改善することで、利益を得る。
しかし、受動的政党をVFLに参加させることは困難である。
本稿では,VFLプロセスへの貢献に基づいて,活動政党による受動的政党へのインセンティブ付与の問題に焦点を当てる。
我々は、この問題を、倒産問題として知られるヌクレロスゲーム理論の変種として定式化し、タルムードの除算則を用いて解決する。
提案手法を総合的および実世界のデータセットで評価し,フェデレーションモデルにデータを寄与する受動的当事者間での公平性とインセンティブ配分の安定性を確認した。
さらに,本手法を既存のshapley値計算法と比較し,より少ない計算量でより効率的な解が得られることを示す。
関連論文リスト
- Towards Active Participant-Centric Vertical Federated Learning: Some Representations May Be All You Need [0.0]
VFL(Vertical Federated Learning)に新たなシンプルなアプローチを導入する。
Active Participant-Centric VFLは、アクティブな参加者が非協力的な方法で推論を行うことを可能にする。
この方法は、教師なし表現学習と知識蒸留を統合し、従来のVFL法に匹敵する精度を実現する。
論文 参考訳(メタデータ) (2024-10-23T08:07:00Z) - Redefining Contributions: Shapley-Driven Federated Learning [3.9539878659683363]
フェデレーテッド・ラーニング(FL)は、機械学習において重要なアプローチとして登場した。
参加者が平等に、あるいは正直に貢献しない場合、グローバルなモデル収束を保証することは困難です。
本稿では,FLにおけるコントリビューションの詳細な評価のために,ShapFedと呼ばれる新しいコントリビューションアセスメントアセスメント手法を提案する。
論文 参考訳(メタデータ) (2024-06-01T22:40:31Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
本稿では,垂直的フェデレートラーニング(VFL)において,経済的に効率的な取引を促進するための交渉型特徴取引手法を提案する。
当社のモデルでは,収益ベース最適化の目的を考慮し,パフォーマンスゲインベースの価格設定を取り入れている。
論文 参考訳(メタデータ) (2024-02-23T10:21:07Z) - VFedMH: Vertical Federated Learning for Training Multiple Heterogeneous
Models [53.30484242706966]
本稿では,複数の異種モデル(VFedMH)を学習するための垂直フェデレーション学習という新しい手法を提案する。
被験者の局所的な埋め込み値を保護するために,軽量なブラインド・ファクターに基づく埋め込み保護手法を提案する。
実験により、VFedMHは、不均一な最適化で複数の異種モデルを同時に訓練し、モデル性能の最近の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-10-20T09:22:51Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
VFLの実践的な産業的応用を実現するために,Semi-VFL (Vertical Semi-Federated Learning) を提案する。
サンプル空間全体に適用可能な推論効率のよいシングルパーティ学生モデルを構築した。
新しい表現蒸留法は、重なり合うデータと非重なり合うデータの両方について、パーティ間の特徴相関を抽出するように設計されている。
論文 参考訳(メタデータ) (2022-09-30T17:59:27Z) - Achieving Model Fairness in Vertical Federated Learning [47.8598060954355]
垂直連合学習(VFL)は、複数の企業が重複しない機能を保有して、プライベートデータやモデルパラメータを開示することなく、機械学習モデルを強化することを可能にする。
VFLは公平性の問題に悩まされており、すなわち、学習されたモデルはセンシティブな属性を持つグループに対して不公平に差別的である可能性がある。
この問題に対処するための公平なVFLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-17T04:40:11Z) - GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation
in Federated Learning [25.44023017628766]
Federated Learning(FL)は、コラボレーティブ機械学習とデータのプライバシ保護のギャップを埋めるものだ。
個人データを公開せずに最終FLモデルの性能に対する参加者の貢献を適切に評価することが不可欠である。
本稿では,この課題に対処するためのガイドトラニケーションのグラディエント・シェープ手法を提案する。
論文 参考訳(メタデータ) (2021-09-05T12:17:00Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
フェデレートラーニング(FL)は、生データを共有することなく、参加するユーザのセットから学習する、人気のある分散ラーニングスキーマとして登場した。
敵対的トレーニング(AT)は集中学習のための健全なソリューションを提供する。
既存のFL技術では,非IDユーザ間の対向的ロバスト性を効果的に広めることができないことを示す。
本稿では, バッチ正規化統計量を用いてロバスト性を伝達する, 単純かつ効果的な伝搬法を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:52:33Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。