Polybot: Training One Policy Across Robots While Embracing Variability
- URL: http://arxiv.org/abs/2307.03719v1
- Date: Fri, 7 Jul 2023 17:21:16 GMT
- Title: Polybot: Training One Policy Across Robots While Embracing Variability
- Authors: Jonathan Yang, Dorsa Sadigh, Chelsea Finn
- Abstract summary: We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
- Score: 70.74462430582163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reusing large datasets is crucial to scale vision-based robotic manipulators
to everyday scenarios due to the high cost of collecting robotic datasets.
However, robotic platforms possess varying control schemes, camera viewpoints,
kinematic configurations, and end-effector morphologies, posing significant
challenges when transferring manipulation skills from one platform to another.
To tackle this problem, we propose a set of key design decisions to train a
single policy for deployment on multiple robotic platforms. Our framework first
aligns the observation and action spaces of our policy across embodiments via
utilizing wrist cameras and a unified, but modular codebase. To bridge the
remaining domain shift, we align our policy's internal representations across
embodiments through contrastive learning. We evaluate our method on a dataset
collected over 60 hours spanning 6 tasks and 3 robots with varying joint
configurations and sizes: the WidowX 250S, the Franka Emika Panda, and the
Sawyer. Our results demonstrate significant improvements in success rate and
sample efficiency for our policy when using new task data collected on a
different robot, validating our proposed design decisions. More details and
videos can be found on our anonymized project website:
https://sites.google.com/view/polybot-multirobot
Related papers
- Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers [41.069074375686164]
We propose Heterogeneous Pre-trained Transformers (HPT), which pre-train a trunk of a policy neural network to learn a task and embodiment shared representation.
We conduct experiments to investigate the scaling behaviors of training objectives, to the extent of 52 datasets.
HPTs outperform several baselines and enhance the fine-tuned policy performance by over 20% on unseen tasks.
arXiv Detail & Related papers (2024-09-30T17:39:41Z) - Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments [26.66666135624716]
We present Robot Utility Models (RUMs), a framework for training and deploying zero-shot robot policies.
RUMs can generalize to new environments without any finetuning.
We train five utility models for opening cabinet doors, opening drawers, picking up napkins, picking up paper bags, and reorienting fallen objects.
arXiv Detail & Related papers (2024-09-09T17:59:50Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - Octo: An Open-Source Generalist Robot Policy [88.14295917143188]
We introduce Octo, a large transformer-based policy trained on 800k trajectories from the Open X-Embodiment dataset.
It can be effectively finetuned to robot setups with new sensory inputs and action spaces within a few hours on standard consumer GPU.
We also perform detailed ablations of design decisions for the Octo model, from architecture to training data, to guide future research on building generalist robot models.
arXiv Detail & Related papers (2024-05-20T17:57:01Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - ExAug: Robot-Conditioned Navigation Policies via Geometric Experience
Augmentation [73.63212031963843]
We propose a novel framework, ExAug, to augment the experiences of different robot platforms from multiple datasets in diverse environments.
The trained policy is evaluated on two new robot platforms with three different cameras in indoor and outdoor environments with obstacles.
arXiv Detail & Related papers (2022-10-14T01:32:15Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.