DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in
IIoT Systems
- URL: http://arxiv.org/abs/2307.03761v3
- Date: Thu, 25 Jan 2024 18:45:31 GMT
- Title: DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in
IIoT Systems
- Authors: Mengjie Zhao and Olga Fink
- Abstract summary: DyEdgeGAT is a novel approach for early-stage fault detection in IIoT systems.
It incorporates operating condition contexts into node dynamics modeling, enhancing its accuracy and robustness.
We rigorously evaluated DyEdgeGAT using both a synthetic dataset and a real-world industrial-scale flow facility benchmark.
- Score: 12.641578474466646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the Industrial Internet of Things (IIoT), condition monitoring sensor
signals from complex systems often exhibit nonlinear and stochastic
spatial-temporal dynamics under varying conditions. These complex dynamics make
fault detection particularly challenging. While previous methods effectively
model these dynamics, they often neglect the evolution of relationships between
sensor signals. Undetected shifts in these relationships can lead to
significant system failures. Furthermore, these methods frequently misidentify
novel operating conditions as faults. Addressing these limitations, we propose
DyEdgeGAT (Dynamic Edge via Graph Attention), a novel approach for early-stage
fault detection in IIoT systems. DyEdgeGAT's primary innovation lies in a novel
graph inference scheme for multivariate time series that tracks the evolution
of relationships between time series, enabled by dynamic edge construction.
Another key innovation of DyEdgeGAT is its ability to incorporate operating
condition contexts into node dynamics modeling, enhancing its accuracy and
robustness. We rigorously evaluated DyEdgeGAT using both a synthetic dataset,
simulating varying levels of fault severity, and a real-world industrial-scale
multiphase flow facility benchmark with diverse fault types under varying
operating conditions and detection complexities. The results show that
DyEdgeGAT significantly outperforms other baseline methods in fault detection,
particularly in the early stages with low severity, and exhibits robust
performance under novel operating conditions.
Related papers
- Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.
We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework to address this problem.
HTGNN explicitly models signals from diverse sensors and integrates operating conditions into the model architecture.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot capabilities.
We present a two-stage reasoning framework that incorporates the judgement regarding potential anomalies into a safe control framework.
This enables our monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles.
arXiv Detail & Related papers (2024-07-11T17:59:22Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Multi-scale Fusion Fault Diagnosis Method Based on Two-Dimensionaliztion
Sequence in Complex Scenarios [0.0]
Rolling bearings are critical components in rotating machinery, and their faults can cause severe damage.
Early detection of abnormalities is crucial to prevent catastrophic accidents.
Traditional and intelligent methods have been used to analyze time series data, but in real-life scenarios, sensor data is often noisy and cannot be accurately characterized in the time domain.
This paper proposes an improved convolutional neural network method with a multi-scale feature fusion model and deep learning compression techniques for deployment in industrial scenarios.
arXiv Detail & Related papers (2023-04-11T13:05:50Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT [11.480824844205864]
This work proposed a novel framework, namely GTA, for multivariate time series anomaly detection by automatically learning a graph structure followed by the graph convolution.
We also devised a novel graph convolution named Influence propagation convolution to model the anomaly information flow between graph nodes.
The experiments on four public anomaly detection benchmarks further demonstrate our approach's superiority over other state-of-the-arts.
arXiv Detail & Related papers (2021-04-08T01:45:28Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
We propose F-FADE, a new approach for detection of anomalies in edge streams.
It uses a novel frequency-factorization technique to efficiently model the time-evolving distributions of frequencies of interactions between node-pairs.
F-FADE is able to handle in an online streaming setting a broad variety of anomalies with temporal and structural changes, while requiring only constant memory.
arXiv Detail & Related papers (2020-11-09T19:55:40Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.