URL: A Representation Learning Benchmark for Transferable Uncertainty
Estimates
- URL: http://arxiv.org/abs/2307.03810v2
- Date: Thu, 19 Oct 2023 15:34:05 GMT
- Title: URL: A Representation Learning Benchmark for Transferable Uncertainty
Estimates
- Authors: Michael Kirchhof and B\'alint Mucs\'anyi and Seong Joon Oh and
Enkelejda Kasneci
- Abstract summary: We propose the Uncertainty-aware Representation Learning benchmark.
It measures the zero-shot transferability of the uncertainty estimate using a novel metric.
We find that approaches that focus on the uncertainty of the representation itself or estimate the prediction risk directly outperform those that are based on the probabilities of upstream classes.
- Score: 26.453013634439802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation learning has significantly driven the field to develop
pretrained models that can act as a valuable starting point when transferring
to new datasets. With the rising demand for reliable machine learning and
uncertainty quantification, there is a need for pretrained models that not only
provide embeddings but also transferable uncertainty estimates. To guide the
development of such models, we propose the Uncertainty-aware Representation
Learning (URL) benchmark. Besides the transferability of the representations,
it also measures the zero-shot transferability of the uncertainty estimate
using a novel metric. We apply URL to evaluate eleven uncertainty quantifiers
that are pretrained on ImageNet and transferred to eight downstream datasets.
We find that approaches that focus on the uncertainty of the representation
itself or estimate the prediction risk directly outperform those that are based
on the probabilities of upstream classes. Yet, achieving transferable
uncertainty quantification remains an open challenge. Our findings indicate
that it is not necessarily in conflict with traditional representation learning
goals. Code is provided under https://github.com/mkirchhof/url .
Related papers
- Uncertainties of Latent Representations in Computer Vision [2.33877878310217]
This thesis makes uncertainty estimates easily accessible by adding them to the latent representation vectors of pretrained computer vision models.
We show that these unobservable uncertainties about unobservable latent representations are indeed provably correct.
arXiv Detail & Related papers (2024-08-26T14:02:30Z) - Explainability through uncertainty: Trustworthy decision-making with neural networks [1.104960878651584]
Uncertainty is a key feature of any machine learning model.
It is particularly important in neural networks, which tend to be overconfident.
Uncertainty as XAI improves the model's trustworthiness in downstream decision-making tasks.
arXiv Detail & Related papers (2024-03-15T10:22:48Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Uncertainty in Contrastive Learning: On the Predictability of Downstream
Performance [7.411571833582691]
We study whether the uncertainty of such a representation can be quantified for a single datapoint in a meaningful way.
We show that this goal can be achieved by directly estimating the distribution of the training data in the embedding space.
arXiv Detail & Related papers (2022-07-19T15:44:59Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
We present HAICU, a method for heterogeneous-agent trajectory forecasting that explicitly incorporates agents' class probabilities.
We additionally present PUP, a new challenging real-world autonomous driving dataset.
We demonstrate that incorporating class probabilities in trajectory forecasting significantly improves performance in the face of uncertainty.
arXiv Detail & Related papers (2021-04-26T10:28:34Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.