Personalized Resource Allocation in Wireless Networks: An AI-Enabled and
Big Data-Driven Multi-Objective Optimization
- URL: http://arxiv.org/abs/2307.03867v1
- Date: Sat, 8 Jul 2023 00:26:36 GMT
- Title: Personalized Resource Allocation in Wireless Networks: An AI-Enabled and
Big Data-Driven Multi-Objective Optimization
- Authors: Rawan Alkurd, Ibrahim Abualhaol, Halim Yanikomeroglu
- Abstract summary: The use of Artificial Intelligence (AI) is envisioned for wireless network design and optimization.
One of the main future applications of AI is enabling user-level personalization for numerous use cases.
The personalization technology advocated in this article is supported by an intelligent big data-driven layer designed to micro-manage the scarce network resources.
- Score: 22.77447144331876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design and optimization of wireless networks have mostly been based on
strong mathematical and theoretical modeling. Nonetheless, as novel
applications emerge in the era of 5G and beyond, unprecedented levels of
complexity will be encountered in the design and optimization of the network.
As a result, the use of Artificial Intelligence (AI) is envisioned for wireless
network design and optimization due to the flexibility and adaptability it
offers in solving extremely complex problems in real-time. One of the main
future applications of AI is enabling user-level personalization for numerous
use cases. AI will revolutionize the way we interact with computers in which
computers will be able to sense commands and emotions from humans in a
non-intrusive manner, making the entire process transparent to users. By
leveraging this capability, and accelerated by the advances in computing
technologies, wireless networks can be redesigned to enable the personalization
of network services to the user level in real-time. While current wireless
networks are being optimized to achieve a predefined set of quality
requirements, the personalization technology advocated in this article is
supported by an intelligent big data-driven layer designed to micro-manage the
scarce network resources. This layer provides the intelligence required to
decide the necessary service quality that achieves the target satisfaction
level for each user. Due to its dynamic and flexible design, personalized
networks are expected to achieve unprecedented improvements in optimizing two
contradicting objectives in wireless networks: saving resources and improving
user satisfaction levels.
Related papers
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - Big-data-driven and AI-based framework to enable personalization in
wireless networks [20.26379197206863]
We propose a big-data-driven and AI-based personalization framework to integrate personalization into wireless networks.
Based on each user's actual requirements and context, a multi-objective formulation enables the network to micromanage and optimize the provided user satisfaction levels simultaneously.
arXiv Detail & Related papers (2023-06-08T02:30:55Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
Federated learning (FL) is anticipated to be a key enabler for achieving ubiquitous AI in 6G networks.
There are several system and statistical heterogeneity challenges for effective and efficient FL implementation in 6G networks.
In this article, we investigate the optimization approaches that can effectively address the challenges.
arXiv Detail & Related papers (2023-03-15T02:18:21Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources.
We present the AIGC-as-a-service concept and discuss the challenges in deploying A at the edge networks.
We propose a deep reinforcement learning-enabled algorithm for optimal ASP selection.
arXiv Detail & Related papers (2023-01-09T09:30:23Z) - AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer
Heterogeneous Networks [7.318997639507269]
We propose a novel layer-based HetNet architecture which distributes tasks associated with different machine learning approaches across network layers and entities.
Such a HetNet boasts multiple access schemes as well as device-to-device (D2D) communications to enhance energy efficiency.
arXiv Detail & Related papers (2022-06-04T22:03:19Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6G will revolutionize the evolution of wireless from "connected things" to "connected intelligence"
Deep learning and big data analytics based AI systems require tremendous computation and communication resources.
edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence.
arXiv Detail & Related papers (2021-11-24T11:47:16Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.