DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation
- URL: http://arxiv.org/abs/2410.14481v1
- Date: Fri, 18 Oct 2024 14:04:38 GMT
- Title: DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation
- Authors: Junjie Wu, Xuming Fang, Dusit Niyato, Jiacheng Wang, Jingyu Wang,
- Abstract summary: We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
- Score: 58.62766376631344
- License:
- Abstract: With the rapid advancements in wireless communication fields, including low-altitude economies, 6G, and Wi-Fi, the scale of wireless networks continues to expand, accompanied by increasing service quality demands. Traditional deep reinforcement learning (DRL)-based optimization models can improve network performance by solving non-convex optimization problems intelligently. However, they heavily rely on online deployment and often require extensive initial training. Online DRL optimization models typically make accurate decisions based on current channel state distributions. When these distributions change, their generalization capability diminishes, which hinders the responsiveness essential for real-time and high-reliability wireless communication networks. Furthermore, different users have varying quality of service (QoS) requirements across diverse scenarios, and conventional online DRL methods struggle to accommodate this variability. Consequently, exploring flexible and customized AI strategies is critical. We propose a wireless network intent (WNI)-guided trajectory generation model based on a generative diffusion model (GDM). This model can be generated and fine-tuned in real time to achieve the objective and meet the constraints of target intent networks, significantly reducing state information exposure during wireless communication. Moreover, The WNI-guided optimization trajectory generation can be customized to address differentiated QoS requirements, enhancing the overall quality of communication in future intelligent networks. Extensive simulation results demonstrate that our approach achieves greater stability in spectral efficiency variations and outperforms traditional DRL optimization models in dynamic communication systems.
Related papers
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - Offline Reinforcement Learning and Sequence Modeling for Downlink Link Adaptation [3.687363450234871]
Link adaption is a challenging task in the presence of mobility, fast fading, and imperfect channel quality information.
We propose three LA designs based on batch-constrained deep Q-learning, conservative Q-learning, and decision transformers.
offline RL algorithms can achieve performance of state-of-the-art online RL methods when data is collected with a proper behavioral policy.
arXiv Detail & Related papers (2024-10-30T14:01:31Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs [1.1861167902268832]
Multi-agent deep reinforcement learning (MADRL) has emerged as a promising method to address a wide range of complex optimization problems like power control.
We present the use of graphs as communication-inducing structures among distributed agents as an effective means to mitigate these challenges.
arXiv Detail & Related papers (2023-11-27T14:25:40Z) - An Intelligent SDWN Routing Algorithm Based on Network Situational
Awareness and Deep Reinforcement Learning [4.085916808788356]
This article introduces an intelligent routing algorithm (DRL-PPONSA) based on deep reinforcement learning with network situational awareness.
Experimental results show that DRL-PPONSA outperforms traditional routing methods in network throughput, delay, packet loss rate, and wireless node distance.
arXiv Detail & Related papers (2023-05-12T14:18:09Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks.
To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources.
This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS.
arXiv Detail & Related papers (2022-04-28T09:26:14Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.